
N
or

ge
s

te
kn

isk
-n

at
ur

vi
te

ns
ka

pe
lig

e
un

iv
er

sit
et

Optimization
on Riemannian Manifolds
in Julia
Ronny Bergmann

Robotics and Automation group research seminar

Trondheim, November 16, 2023

2

Plan for today

▶ Motivation – Why Optimize on Manifolds?
▶ Software – Why Julia and How to get started?
▶ An Example – The Difference of Convex Algorithm

N
or

ge
s

te
kn

isk
-n

at
ur

vi
te

ns
ka

pe
lig

e
un

iv
er

sit
et

Motivation

3

The Rayleigh Quotient
When minimizing the Rayleigh quotient for a symmetric A ∈ Rn×n

argmin
x∈Rn\{0}

xTAx
∥x∥2

Any eigenvector x∗ to the smallest EV λ is a minimizer
no isolated minima and Newton’s method diverges
Constrain the problem to unit vectors ∥x∥ = 1!

classic constrained optimization (ALM, EPM,...)
Today Utilize the geometry of the sphere

unconstrained optimization argmin
p∈Sn−1

pTAp

adapt unconstrained optimization to Riemannian manifolds.

4

The Generalized Rayleigh Quotient
More general. Find a basis for the space of eigenvectors to
λ1 ≤ λ2 ≤ · · · ≤ λk:

argmin
X∈St(n,k)

tr(XTAX), St(n, k) :=
{
X ∈ Rn×k ∣∣ XTX = I

}
,

a problem on the Stiefel manifold St(n, k)

Invariant under rotations within a k-dim subspace.
Find the best subspace!

argmin
span(X)∈Gr(n,k)

tr(XTAX), Gr(n, k) :=
{
span(X)

∣∣ X ∈ St(n, k)
}
,

a problem on the Grassmann manifold Gr(n, k) = St(n, k)/O(k).

5

Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

argmin
p∈M

f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a function

f might be nonsmooth and/or nonconvex
M might be high-dimensional

6

A Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a “suitable” collection of
charts, that identify subsets of M with open subsets of Rd

and a continuously varying inner product on the tangent
spaces.

[Absil, Mahony, and Sepulchre 2008]

7

A Riemannian Manifold M
Notation.
▶ Logarithmic map logp q = γ̇(0;p,q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·;p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p
▶ parallel transport Pq←pX

γ(·;p , q)p q

expp
logp

X

logp p

TpM

M

Y
Pq←pY

N
or

ge
s

te
kn

isk
-n

at
ur

vi
te

ns
ka

pe
lig

e
un

iv
er

sit
et

Software

8

Manifolds & Optimisation – in Julia.
Goals.
▶ abstract definition of manifolds and properties thereon

e. g. different metrics, retractions, embeddings
⇒ implement abstract algorithms for generic manifolds
▶ easy to implement own manifolds & easy to use
▶ well-documented and well-tested
▶ fast.

Why Julia?
▶ high-level language, properly typed
▶ multiple dispatch (cf. f(x), f(x::Number), f(x::Int))
▶ just-in-time compilation, solves two-language problem
▶ I like the language – and the community.

9

ManifoldsBase.jl – Motivation
Goal. Provide a generic interface to manifolds for
▶ defining own (new) manifolds
▶ implementing generic algorithms on an arbitrary manifold M

A Manifold. a Riemannian manifold is a subtype of AbstractManifold{F}
▶ F ∈ {R,C,H}: field the manifold is build on
▶ stores all “general” information, (mainly) the manifold dimension
▶ example (form Manifolds.jl): M = Sphere(2)

Points and Tangent vectors.
▶ by default not typed, often <:AbstractArray
▶ we provide <:AbstractManifoldPoint and <:TVector for more

advanced ones

10

ManifoldsBase.jl – Functions
Goal. Efficient and reusable functions.

Functions. We provide functions like
▶ exp(M, p, X), log(M, p, q), inner(M, p, X, Y),

parallel_transport(M, p, X, q)
▶ defaults, for example norm(M, p, X) or shortest_geodesic(M, p, q)
▶ retract(M, p, X, method) to approx. expp X, with different methods,
▶ similarly inverse_retract(M, p, q, m) and

vector_transport(M, p, X, q, m)

Efficient. For all functions we design
▶ exp!(M, q, p, X) to work in-place of q
▶ exp(M, p, X) allocates and falls back to exp!

⇒ only one implementation, avoiding memory allocation where possible

11

ManifoldsBase.jl – Beyond functions

Decorators. A manifold can be decorated
▶ with an embedding, e. g. S2 ⊂ R3, to pass implementation

(inner(M, p, X, Y)) to the embedding
▶ Specify more than one metric

Generic Manifolds. The interface provides generic (meta) manifolds like
▶ TpM = TangentSpace(M,p) TpM
▶ M = ProductManifold(N1,N2) for M = N1 ×N2, short: M = N1×N2
▶ M = PowerManifold(N,k) for M = N k, short: M = N^k or even

M = N^(k,l)

12

Manifolds.jl

[Axen, Baran, RB, and Rzecki 2023]

Goal. Provide a library of Riemannian manifolds,
that is efficiently implemented and well-documented

Euclidean. Fd1×d2×d3×..., F ∈ {R,C,H}
Matrices.

▶ centered, symmetric, skew-symmetric
▶ symmetric positive definite
▶ (sym. pos. semidef.) fixed rank
▶ multinomial, multinom. sym.
▶ multilin. doubly stochastic
▶ unit norm, symmetric, symplectic

Groups. (incl. product & power groups)
▶ SO(n), SE(n), SU(n)
▶ (General, Special) Linear
▶ Heisenberg, circle, translation

Furthermore.
▶ circle, torus, (Array) sphere, oblique
▶ essential manifold, elliptope, flag
▶ (generalized, symplectic) Stiefel
▶ (generalized) Grassmann
▶ hyperbolic space & Lorentzian
▶ Kendall’s (pre) shape space
▶ positive numbers
▶ probability simplex
▶ projective space
▶ rotations
▶ Tucker

13

Generic implementation of Bézier curves
Idea. Generalize de Casteljau’s algorithm for x0, . . . , xn ∈ Rn as

bn(t; x0, . . . , xn) = b1(t;bn−1(t; x0, . . . , xn−1),bn−1(t; x1, . . . , xn))
b1(t; x0, x1) = x0 + t(x1 − x0)

by replacing the straight line b1(·;a,b) by shortest geodesics γ(t;p,q)
[Gousenbourger, Massart, and Absil 2018; RB and Gousenbourger 2018]

[Axen, Baran, RB, and Rzecki 2023]

function bezier(M::AbstractManifold , t, pts::NTuple)
p = bezier(M, t, pts[1:(end - 1)])
q = bezier(M, t, pts[2:end])
return shortest_geodesic(M, p, q, t)

end
function bezier(M::AbstractManifold , t, pts::NTuple{2})

return shortest_geodesic(M, pts[1], pts[2], t)
end

14

Bezier Curves – An example on the sphere

An example of a Bézier curve with 4 (dark blue) points on S2.

15

Manifolds.jl – A comparison in speed
[Axen, Baran, RB, and Rzecki 2023]

101 102 103 104 105 106

10−2

10−1

100

101

102

103

dimension n

tim
e

[µ
s]

Distance on the Sphere Sn

Geomstats (Autograd)
Geomstats (NumPy)
Geomstats (PyTorch)
Geomstats (TensorFlow)
GeoOpt
Manopt (Matlab)
Pymanopt
Manifolds.jl
RiemOpt

16

Manopt.jl
Goal. Provide optimization algorithms on Riemannian manifolds.

Features. Given a Problem p and a SolverState s,
implement initialize_solver!(p, s) and step_solver!(p, s, i)
⇒ an algorithm in the Manopt.jl interface

Highlevel interface like gradient_descent(M, f, grad_f)
on any manifold M from Manifolds.jl.
Provide debug output, recording, cache & counting capabilities,
as well as a library of step sizes and stopping criteria.

Manopt family.
manoptjl.org

[RB 2022]
manopt.org

[Boumal, Mishra, Absil, and Sepulchre 2014]
pymanopt.org

[Townsend, Koep, and Weichwald 2016]

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org

17

Manopt.jl
Algorithms.
Cost-based Nelder-Mead, Particle Swarm
Subgradient-based Subgradient Method
Gradient-based Gradient Descent, Conjugate Gradient, Stochastic,

Momentum, Nesterov, Averaged, …
Quasi-Newton: (L-)BFGS, DFP, Broyden, SR1,...

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC)
nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point
constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe
nonconvex Difference of Convex Algorithm, DCPPA

manoptjl.org

https://www.manoptjl.org

18

Calling a Manopt Solver: Gradient Descent
[Axen, Baran, RB, and Rzecki 2023]

Let’s compute the Riemannian Center of Mass (mean) on the Sphere1.
using Manopt , Manifolds , LinearAlgebra
M = Sphere(2)
N = 100

generate random points on M
pts = [normalize(randn(3)) for _ in 1:N]

define the loss function and its gradient
f(M,q) = sum(p -> distance(M, p, q)^2 / 2N, pts)
grad_f(M,q) = sum(p -> grad_distance(M, p, q) / N, pts)

compute the mean
p_mean = gradient_descent(M, f, grad_f , pts[1])

1cf. https://manoptjl.org/stable/solvers/gradient_descent/

https://manoptjl.org/stable/solvers/gradient_descent/

N
or

ge
s

te
kn

isk
-n

at
ur

vi
te

ns
ka

pe
lig

e
un

iv
er

sit
et

The Difference of Convex
Algorithm

19

Difference of Convex

We aim to solve
argmin
p∈M

f(p)

where
▶ M is a Riemannian manifold
▶ f :M→ R is a difference of convex function, i. e. of the form

f(p) = g(p)− h(p)

▶ g,h :M→ R are convex, lower semicontinuous, and proper

20

The Euclidean DCA
Idea 1. At xk, approximate h(x) by its affine minorization
hk(x) := h(x(k)) + ⟨x− x(k), y(k)⟩ for some y(k) ∈ ∂h(xk).
⇒ minimize g(x)− hk(x) = g(x) + h(x(k))− ⟨x− x(k), y(k)⟩ instead.

Idea 2. Using duality theory finding a new y(k) ∈ ∂h(x(k)) is equivalent to

y(k) ∈ argmin
y∈Rn

{
h∗(y)− g∗(y(k−1))− ⟨y− y(k−1), x(k)⟩

}
Idea 3. Reformulate 2 using a proximal map ⇒ DCPPA

On manifolds: [Almeida, Neto, Oliveira, and Souza 2020; Souza and Oliveira 2015]

In the Euclidean case, all three models are equivalent.

21

Derivation of the Riemannian DCA
We consider the linearization of h at some point p(k):
With ξ ∈ ∂h(p(k)) we get

hk(p) = h(p(k)) + ⟨ξ , logp(k) p⟩p(k)

Using musical isomorphisms we identify X = ξ♯ ∈ TpM,
where we call X a subgradient. Locally hk minorizes h, i. e.

hk(q) ≤ h(q) locally around p(k)

⇒ Use −hk(p) as upper bound for −h(p) in f.

Note. On Rn the function hk is linear.
On a manifold hk is not necessarily convex, even on a Hadamard manifold.

22

The Riemannian DC Algorithm
[RB, Ferreira, Santos, and Souza 2023]

Input: An initial point p0 ∈ dom(g), g and ∂Mh
1: Set k = 0.
2: while not converged do
3: Take X(k) ∈ ∂Mh(p(k))
4: Compute the next iterate pk+1 as

p(k+1) ∈ argmin
p∈M

g(p)−
(
Xk , logp(k) p

)
p(k) . (∗)

5: Set k← k+ 1
6: end while

Note. In general the subproblem (∗) can not be solved in closed form.
But an approximate solution yields a good candidate.

23

Convergence of the Riemannian DCA
[RB, Ferreira, Santos, and Souza 2023]

Let {p(k)}k∈N and {X(k)}k∈N be the iterates and subgradients of the RDCA.
Theorem.
If p̄ is a cluster point of {p(k)}k∈N, then p̄ ∈ dom(g) and there exists a
cluster point X̄ of {X(k)}k∈N s. t. X̄ ∈ ∂g(p̄) ∩ ∂h(p̄).
⇒ Every cluster point of {p(k)}k∈N, if any, is a critical point of f.

Proposition. Let g be σ-strongly (geodesically) convex. Then

f(pk+1) ≤ f(p(k))− σ

2
d2(p(k),pk+1).

and
∞∑
k=0

d2(p(k),p(k+1)) <∞, so in particular lim
k→∞

d(p(k),p(k+1)) = 0.

24

Implementation of the DCA
The algorithm is implemented and released in Julia using Manopt.jl2.
It can be used with any manifold from Manifolds.jl

A solver call looks like
q = difference_of_convex_algorithm(M, f, g, ∂h, p0)

where one has to implement f(M, p), g(M, p), and ∂h(M, p).

▶ a sub problem is automatically generated
▶ an efficient version of its cost and gradient is provided
▶ you can specify the sub-solver to using sub_state=

to also set up the specific parameters of your favourite algorithm

2see https://manoptjl.org/stable/solvers/difference_of_convex/

https://manoptjl.org/stable/solvers/difference_of_convex/

25

Summary.
▶ We considered Optimization on Riemannian Manifolds argmin

p∈M
f(p).

▶ ManifoldsBase.jl is an Interface in Julia for Riemannian manifolds
▶ Manifolds.jl is a library of fast implementations of manifolds
▶ Manopt.jl provides optimization algorithms on manifolds
▶ We saw the Difference of Convex algorithm as an example

Further.
▶ ManifoldDiff.jl couples AD tools with differential geometry
▶ ManoptExamples.jl provides examples and their code
▶ ManifoldDiffEq.jl (first steps to) solving differential equations on

manifolds
See juliamanifolds.github.io for further details on these.

https://juliamanifolds.github.io

26

Selected References
Axen, S. D., M. Baran, RB, and K. Rzecki (2023). “Manifolds.jl: An Extensible Julia Framework
for Data Analysis on Manifolds”. In: ACM Transactions on Mathematical Software. Accepted for
pulication. doi: 10.1145/3618296. arXiv: 2106.08777.

RB (2022). “Manopt.jl: Optimization on Manifolds in Julia”. In: Journal of Open Source
Software 7.70, p. 3866. doi: 10.21105/joss.03866.

RB, O. P. Ferreira, E. M. Santos, and J. C. d. O. Souza (2023). The difference of convex
algorithm on Hadamard manifolds. arXiv: 2112.05250.

RB and P.-Y. Gousenbourger (2018). “A variational model for data fitting on manifolds by
minimizing the acceleration of a Bézier curve”. In: Frontiers in Applied Mathematics and
Statistics. doi: 10.3389/fams.2018.00059. arXiv: 1807.1009.
Boumal, N. (2023). An introduction to optimization on smooth manifolds. Cambridge University
Press. url: https://www.nicolasboumal.net/book.

Souza, J. C. d. O. and P. R. Oliveira (2015). “A proximal point algorithm for DC fuctions on
Hadamard manifolds”. In: Journal of Global Optimization 63.4, pp. 797–810. doi:
10.1007/s10898-015-0282-7.

Interested in Numerical Differential Geometry? Join numdiffgeo.zulipchat.com!
ronnybergmann.net/talks/2023-Trondheim-Manopt.pdf

https://doi.org/10.1145/3618296
https://arxiv.org/abs/2106.08777
https://doi.org/10.21105/joss.03866
https://arxiv.org/abs/2112.05250
https://doi.org/10.3389/fams.2018.00059
https://arxiv.org/abs/1807.1009
https://www.nicolasboumal.net/book
https://doi.org/10.1007/s10898-015-0282-7
http://numdiffgeo.zulipchat.com/
http://ronnybergmann.net/talks/2023-Trondheim-Manopt.pdf

	Motivation
	Software
	The Difference of Convex Algorithm

