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Introduction

Task. We aim to solve
argmin

p∈M
f(p)

where
▶ M is a Riemannian manifold, for this talk even Hadamard
▶ f :M→ R is (today) a difference of convex function, i. e. of the form

f(p) = g(p)− h(p)

▶ g, h :M→ R are convex, lsc., and proper
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A Riemannian Manifold M
A d-dimensional Riemannian manifold can be informally defined as a set M
covered with a ‘suitable’ collection of charts, that identify subsets of M with
open subsets of Rd and a continuously varying inner product on the tangent
spaces. [Absil, Mahony, and Sepulchre 2008]

Notation.
▶ Logarithmic map logp q = γ̇(0; p, q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·; p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p

γ(·; p , q)p q

expp
logp

X
logp p

TpM

M
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(Geodesic) Convexity

[Sakai 1996; Udrişte 1994]

A set C ⊂M is called (strongly geodesically) convex
if for all p, q ∈ C the geodesic γ(·; p , q) is unique and lies in C.

A function F : C → R is called (geodesically) convex
if for all p, q ∈ C the composition F(γ(t; p , q)), t ∈ [0, 1], is convex.
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The Riemannian Subdifferential

The subdifferential of f at p ∈ C is given by [Lee 2003; Udrişte 1994]

∂Mf(p) :=
{
ξ ∈ T ∗

pM
∣∣ f(q) ≥ f(p) + ⟨ξ , logp q⟩p for q ∈ C

}
,

where
▶ T ∗

pM is the dual space of TpM,
▶ ⟨· , ·⟩p denotes the duality pairing on T ∗

pM×TpM
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Fenchel Duality on a Hadamard Manifold

[Silva Louzeiro, RB, and Herzog 2022]

Definition
Let f :M→ R. The Fenchel conjugate of f is the function f ∗ : T ∗M→ R
defined by

f ∗(p,X) := sup
q∈M

{
⟨X, logp q⟩ − f(q)

}
, (p,X) ∈ T ∗M.

[RB, Ferreira, Santos, and J. C. O. Souza 2023]

Theorem.

inf
(q,X)∈T ∗M

{
h∗(q,X)− g∗(q,X)

}
= inf

p∈M
{g(p)− h(p)} .
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The Euclidean DCA

Idea 1. At xk, approximate the the second DC component h(x) by its affine
minorization hk(x) := h(xk) + ⟨x− xk, yk⟩ for some yk ∈ ∂h(xk).

⇒ minimize g(x)− hk(x) = g(x) + h(xk)− ⟨x− xk, yk⟩ instead.

Idea 2. Using duality theory finding a new yk ∈ ∂h(xk) is equivalent to

argmin
y∈Rn

{
h∗(y)− g∗(yk−1)− ⟨y− yk−1, xk⟩

}
Idea 3. Forumlates the second idea in terms of proximal maps ⇒ PPA
⇒ Yields a PPA, on manifolds:

[Almeida, Neto, Oliveira, and J. C. d. O. Souza 2020; J. C. d. O. Souza and Oliveira 2015]

All yield equivalent algorithms on manifolds, here we focus on the first idea
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Derivation of the Riemannian DCA

We consider the linearization of h at some point pk.
For an ξ ∈ ∂h(pk) we consider

hk(p) = h(pk) + ⟨ξ , logpk p⟩pk

We use the musical isomorphisms to identify X = ξ♯ ∈ TpM.
Since X is a subgradient we have that hk locally minorizes h, i.e.

hk(q) ≤ h(q) locally around pk

⇒ Use as upper bound for −h(p) in f.

Note. While on Rn the function is linear, this is not necessarily convex on
manifolds, not even Hadamard ones.



9

The Riemannian DC Algorithm
[RB, Ferreira, Santos, and J. C. O. Souza 2023]

Input: An initial point p0 ∈ dom(g), g and ∂Mh
1: Set k = 0.
2: while not converged do
3: Take Xk ∈ ∂Mh(pk)
4: Compute the next iterate pk+1 as

pk+1 ∈ argmin
p∈M

(
g(p)−

(
Xk , logpk p

)
pk

)
.

5: Set k← k + 1
6: end while

Note. In general the subproblem can not be solved in closed form, but even
approximately (a few steps gradient descent) yields a good candidate.
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Convergence
[RB, Ferreira, Santos, and J. C. O. Souza 2023]

Proposition. Let {pk}k∈N be generated by the Riemannian DCA and g be
σ-strongly (geodesically) convex . Then, the following inequality holds

f(pk+1) ≤ f(pk)−
σ

2 d2(pk, pk+1).

Moreover, if pk+1 = pk, then pk is a critical point of f.

Proposition. Let {pk}k∈N be generated by the Riemannian DCA Then,
+∞∑
k=0

d2(pk, pk+1) <∞.

In particular, lim
k→∞

d(pk, pk+1) = 0.

Theorem. Let {pk}k∈N and {Xk}k∈N be generated by the Riemannian DCA.
If p̄ is a cluster point of {pk}k∈N, then p̄ ∈ dom(g) and there exists a cluster
point X̄ of {Xk}k∈N s. t. X̄ ∈ ∂g(p̄) ∩ ∂h(p̄).
⇒ Every cluster point of {pk}k∈N, if any, is a critical point of f.
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ManifoldsBase.jl & Manifolds.jl
ManifoldsBase.jl is an interface
for Riemannian manifolds M

▶ inner(M, p, X, Y) for (X , Y)p
▶ exp(M, p, X) and log(M, p, q),
▶ more general:

retract(M, p, X, m),
where m is a retraction method

▶ embeddings as decorator
mutating variants, e. g.
exp!(M, q, p, X)
works in place of q

Manifolds.jl is a Library of manifolds
▶ Circle, (unit) Sphere & Torus
▶ Fixed Rank Matrices
▶ (Symplectic) Stiefel & Grassmann
▶ Hyperbolic space & Rotations
▶ Symmetric positive definite matrices
▶ ...and many more

as well as generically
▶ power & product manifold
▶ tangent & vector bundles
▶ Lie groups, connections, metrics,…

juliamanifolds.github.io/ManifoldsBase.jl/
juliamanifolds.github.io/Manifolds.jl/ [Axen, Baran, RB, and Rzecki 2023]

https://juliamanifolds.github.io/ManifoldsBase.jl/
https://juliamanifolds.github.io/Manifolds.jl/
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Manopt.jl: Optimisation on Manifolds in Julia
Goal. Optimisation algorithms on Riemannian manifolds, based on
ManifoldsBase.jl ⇒ works with any manifold from Manifolds.jl.

Features.
▶ generic algorithm framework:

With Problem p and a SolverState s
▶ initialize_solver!(p, s)
▶ step_solver!(p, s, i): ith step

run algorithm: call solve(p, s)

▶ generic debug and recording
▶ step sizes and stopping criteria.

Manopt Family.
manoptjl.org [RB 2022]

manopt.org [Boumal, Mishra, Absil, and Sepulchre 2014]

pymanopt.org [Townsend, Koep, and Weichwald 2016]

Algoirthms.
▶ Nelder-Mead, Particle Swarm
▶ Subgradient Method
▶ Gradient Descent

CG, Stochastic, Momentum, ...
▶ Quasi-Newton

BFGS, DFP, Broyden, SR1, ...
▶ Trust Regions
▶ Chambolle-Pock
▶ Douglas-Rachford, CPPA
▶ ALM, EPM, Frank-Wolfe,...
▶ Difference of Convex

DCA, DCPPA

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org
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Implementation

The Algorithm is implemented1 in Julia using Manopt.jl which uses manifolds
from Manifolds.jl A solver call just looks like

x_star = difference_of_convex_algorithm(M, f, g, ∂h, p0)

where
▶ provide ∂h(M, X, p)! to reuse the memory X for the ∂h
▶ a sub problem is automatically generated
▶ an efficient version of the cost and gradient is provided
▶ you can specify the sub-solver to using sub_state=

to also set up the specific parameters of your favourite algorithm

1not yet in a release version
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Rosenbrock and First Order Methods

Problem. We consider the classical Rosenbrock example

argmin
x∈R2

a
(
x2

1 − x2
)2

+
(
x1 − b

)2
,

where a, b > 0 are positive numbers, classically b = 1 and a≫ b
We will use a = 2 · 105 (to see an effect).

Known Minimizer x∗ =
(

b
b2

)
with cost f(x∗) = 0.

Goal. Compare first-order methods, i.e. using the (Euclidean) gradient

∇f(x) =
(

4a(x2
1 − x2)

−2a(x2
1 − x2)

)
+

(
2(x1 − b)

0

)



15

A New Metric on R2

In our Riemannian framework, we can introduce a new metric on R2 as

Gp :=

(
1 + 4p2

1 −2p1
−2p1 1

)
, with inverse G−1

p =

(
1 2p1

2p1 1 + 4p2
1

)
.

We obtain (X , Y)p = XTGpY

The exponential and logarithmic map are given as

expp(X) =
(

p1 + X1
p2 + X2 + X2

1

)
, logp(q) =

(
q1 − p1

q2 − p2 − (q1 − p1)2

)
.
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The Riemannian Gradient w.r.t. the New Metric

Let f :M→ R. Since we just changed the metric, its Riemannian gradient
grad f :M→ TM can be computed by

grad f(p) = G−1
p ∇f(p).

Denoting the two components of the Euclidean gradient by ∇f(p) =
(

f ′
1(p)

f ′
2(p)

)
we can derive that given two points p, q ∈M we have〈

grad f(q), logq p
〉

q
= (p1 − q1)f

′
1(q) + (p2 − q2 − (p1 − q1)

2)f ′
2(q)

This is automatically done in Manopt.jl.
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The Experiment Setup
Algorithms. We now compare

1. The Euclidean gradient descent algorithm on R2,
2. The Riemannian gradient descent algorithm on M,
3. The Difference of Convex Algorithm on M,

using Riemannian gradient descent as a sub-solver

For the third we split f into f(x) = g(x)− h(x) with

g(x) = a
(
x2

1 − x2
)2

+ 2
(
x1 − b

)2 and h(x) =
(
x1 − b

)2
.

and use
p0 =

1
10

(
1
2

)
with cost f(p0) ≈ 7220.81.

Stopping Criterion. Change in iterates < 10−16.
For the sub solver a gradient norm < 10−16.
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The Results
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The Results

Algorithm Runtime # Iterations
Euclidean GD 305.567 sec. 53 073 227
Riemannian GD 18.894 sec. 2 454 017
Difference of Convex Algorithm 7.704 sec. 2 459
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