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Optimization
(Constrained) Optimization aims to find for a function f : Rm → R a point

argmin
x∈Rm

f(x)

Challenges:
▶ constrained to some C ⊂ Rm, e. g. unit vectors
▶ symmetries / invariances

Geometric Optimization aims to find

argmin
p∈M

F(p)

where F is defined on a Riemannian manifold M, e. g. the sphere Sd ⊂ Rd+1.
⇒ the problem is unconstrained (again).
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A Riemannian manifold M
A d-dimensional Riemannian manifold can be informally defined as a set M covered
with a ‘suitable’ collection of charts, that identify subsets of M with open subsets of
Rd and a continuously varying inner product on the tangent spaces.[Absil, Mahony, and Sepulchre 2008]

Notation.
▶ Logarithmic map logp q = γ̇(0; p, q)
▶ Exponential map expp X = γp,X(1)
▶ Geodesic γ(·; p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p

γ(·; p , q)p q

expp
logp

X
logp p

TpM

M
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ManifoldsBase.jl & Manifolds.jl
ManifoldsBase.jl is an interface
for Riemannian manifolds M

▶ inner(M, p, X, Y) (X , Y)p
▶ exp(M, p, X) and log(M, p, q),
▶ more general:

retract(M, p, X, m),
where m is a retraction method

▶ embeddings as decorator
mutating variants, e. g.
exp!(M, q, p, X)
works in place of q

Manifolds.jl is a Library of manifolds
▶ Circle, (unit) Sphere & Torus
▶ Fixed Rank Matrices
▶ (Symplectic) Stiefel & Grassmann
▶ Hyperbolic space & Rotations
▶ Symmetric positive definite matrices
▶ ...and many more

as well as generically
▶ power & product manifold
▶ tangent & vector bundles
▶ Lie groups, connections, metrics,…

juliamanifolds.github.io/ManifoldsBase.jl/ [Axen, Baran, RB, and Rzecki 2021]
juliamanifolds.github.io/Manifolds.jl/ JuliaCon 2020 youtu.be/md-FnDGCh9M
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Manopt.jl – Structure
Manopt.jl depends only on ManifoldsBase.jl and consists of
▶ a Problem P to specify static properties:

the manifold M, the cost F, its (Riemannian) gradient gradF, ...
▶ some Options O to specify a solver and containing dynamic data:

the current iterate, the current gradient, a stopping criterion, ...
▶ implement

1. initialize_solver!(P, O) to initialise a solver run
2. step_solver!(P, O, i) to perform the ith step

⇒ call solve(P,O) to run the solver or use a high-level interface
Furthermore one can
▶ specify a Stepsize s, that is for example a Linesearch l
▶ include a StoppingCriterion sc, a functor sc(P, O, i) returning true/false

sc1 | sc2 and sc1 & sc2 to build more advanced criteria
▶ DebugOptions and RecordOptions decorate Options with print/record
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Manopt.jl – Available Solvers
Currently the following solvers are available
▶ Gradient Descent

CG, Stochastic, Momentum, Alternating,
Average, Nesterov, ...

▶ Quasi-Newton
(L-)BFGS, DFP, Broyden, SR1, ...

▶ Nelder-Mead, Particle Swarm
▶ Subgradient Method
▶ Trust Regions
▶ Chambolle-Pock (PDHG)
▶ Douglas-Rachford
▶ Cyclic Proximal Point

The Manopt Family.
manoptjl.org [RB 2022]

manopt.org
[Boumal, Mishra, Absil, and Sepulchre 2014]

pymanopt.org
[Townsend, Koep, and Weichwald 2016]
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Example – A Riemannian Center of Mass
The mean of N data points x1, . . . , xN ∈ Rn is

x∗ = 1
N

N∑
i=1

xi ⇔ x∗ = argmin
x∈Rm

1
2N

N∑
i=1

∥x − xi∥2
2

⇒ the minimizer of sum of squared distances
For p1, . . . , pN ∈ M: [Karcher 1977]

Riemannian center(s) of mass are

argmin
p∈M

1
2N

N∑
i=1

d2
M(p, pi),

▶ (in general) neither closed form nor unique
▶ For F(p) = 1

2d2
M(p, pi)

we have gradF(p) = − logp pi

⇒ use gradient descent

using LinearAlgebra
using Manopt , Manifolds
M = Sphere(2)
N = 100
pts = [randn(3) for _ in 1:N]
pts ./= norm.(pts)
F(M, p) = sum(

pi -> distance(M,pi,p)^2/2N,
pts,

)
gF(M, p) = sum(

pi -> grad_distance(M,pi,p)/N,
pts,

)
# compute a center of mass
# in place of m
m = copy(M, pts[1])
gradient_descent!(M, F, gF, m)
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