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1. Introduction



Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals,
GPS data, wind, flow,...

- Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

- Electron backscattered
diffraction (EBSD)

INSAR-Data of Mt. Vesuvius

[Rocca, Prati, Guarnieri, 1997]

phase-valued data, M = §'
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diffraction (EBS D) [Gesch et al, 2009]
directional data, M = §?



Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range
- Interferometric synthetic
aperture radar (InSAR)

- Surface normals,
GPS data, wind, flow,...

- Diffusion tensors in magnetic
resonance imaging (DT-MRI),

diffusion tensors in human brain

covariance matrices from the Camino dataset
http://cmic.cs.ucl.ac.uk/camino
- Electron backscattered sym. pos. def. matrices, M = SPD(3)

diffraction (EBSD)


http://cmic.cs.ucl.ac.uk/camino
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resonance imaging (DT-MRI),
covariance matrices

- Electron backscattered

horizontal slice #28
diffraction (EBSD) from the Camino dataset
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sym. pos. def. matrices, M = SPD(3)
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Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals,
GPS data, wind, flow,...

- Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

- Electron backscattered
diffraction (EBSD)

EBSD example from the MTEX toolbox

[Bachmann, Hielscher, since 2005]

Rotations (mod. symmetry),
M =S0@3)(/S). >



Manifold-Valued Signals and Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic

Common properties
aperture radar (InSAR) HISY

- Range of values is a

- Surface normals, . ) )
Riemannian manifold

GPS data, wind, flow,... . o
- Tasks from “classical

- Diffusion tensors in magnetic image processing, e.g.
resonance imaging (DT-MRI), . denoising
covariance matrices - inpainting

- Electron backscattered - interpolation
diffraction (EBSD) )



A d-dimensional Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a ‘suitable’ collection of
charts, that identify subsets of M with open subsets of R? and

a continuously varying inner product on the tangential spaces.
[Absil, Mahony, Sepulchre, 2008]



A d-dimensional Riemannian Manifold M

Geodesic g(-; p,q) shortest path (on M) between p,q € M
Tangent space T, M at p, with inner product (-, ),
Logarithmic map log, ¢ = ¢(0;p, q) “speed towards ¢"
Exponential map exp, X= g(1), where g(0) = p, 9(0) = X
Parallel transport PT,,_,,(Y) of Y € T, M along g(-;p, q)



We consider the minimization problem

ar;gj;er?in F(p) + G(A(p))

- M, N are (high-dimensional) Riemannian Manifolds
- F: M — R (locally) convex, nonsmooth

- G: N — R (locally) convex, nonsmooth

- A: M — N nonlinear

- C C M strongly geodesically convex.



Splitting Methods & Algorithms

On a Riemannian manifold M we have

- Cyclic Proximal Point Algorithm (CPPA) (Bacak, 201
- (parallel) Douglas—Rachford Algorithm (PDRA)

[Bergmann, Persch, Steidl, 2016]

On R™ PDRA is known to be equivalent to

[Setzer, 2011; O'Connor, Vandenberghe, 2018]

- Primal-Dual Hybrid Gradient Algorithm (PDHGA)

[Esser, Zhang, Chan, 2010]

- Chambolle-Pock Algo rithm (CPA) [Chambolle, Pock, 2011; Pock et al., 2009]

Goals of this talk.

Formulate Duality on a Manifold
Derive a Riemannian Chambolle-Pock Algorithm (RCPA)



Musical Isomorphisms

[Lee, 2003]

The dual space 7, M of a tangent space 7, M is called
cotangent space. We denote by (-, ) the duality pairing.

We define the musical isomorphisms

b M X X € TP Mvia (X2, Y) = (X,Y),
forallY € T,M

T TAM S E € e TpMvia (6Y), = (€,Y)
forallY € TypM.

= inner product and parallel transport on/between T, M



[Sakai, 1996; Udriste, 1994]
A set C ¢ M is called (strongly geodesically) convex if for all
p,q € C the geodesic g(+;p,q) Is unique and lies in C.

A function F: C — R is called convex if for all p, ¢ € C the
composition F(g(t;p,q)),t € [0,1], Is convex.



The Subdifferential

[Lee, 2003; Udriste, 1994]

The subdifferential of F at p € C is given by
IMF (p) ={§ € TyM|F(q) = F(p) + (§,1log, q) forgeC},
where

Ty M is the dual space of T,M,
- (+,+) denotes the duality pairing on 7, M x TpM



2. Fenchel Duality



The Euclidean Fenchel Conjugate

Let f: R™ — R be proper and convex.

We define the Fenchel conjugate f*: R™ — R of f by

- interpretation: maximize the distance of ¢z to f
= extremum seeking problem on the epigraph

The Fenchel biconjugate reads

7 (@) = (f*)"(z) = sup{(¢, z) — f*(§)}-

£eRm



Illustration of the Fenchel Conjugate

The function f

The Fenchel conjugate f*
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Properties of the Fenchel Conjugate

[Rockafellar, 1970]

- The Fenchel conjugate f* is convex (even if f is not)

- If f(z) < g(z) holds for all z € R™
then f*(¢) > ¢g*(¢) holds for all £ e R™

- If g(z) = f(z + b) for some b € R holds for all z € R™
then g*(&) = £*(&) — ¢€Tb holds for all £ € R”

- If g(x) = Af(x), for some X > 0, holds for all x € R™
then g*(&) = Af*(£/\) holds for all £ € R”

- f* is the largest convex, lsc function with f** < f

- especially the Fenchel-Moreau theorem:
f convex, proper, Isc = f** = f.

1



Properties of the Fenchel Conjugate Il

The Fenchel-Young inequality holds, i.e.,
f(x)+ () > €Tz forall z,£eR™
We can characterize subdifferentials

- For a proper, convex function f

¢ €0f(x) & f(z) + [ =¢"

- For a proper, convex, Isc function f, then

£ € 0f(z) & xedf(f)

12



The Riemannian m—Fenchel Conjugate

[Bergmann, Herzog, et al,, 2019]
alternative approach: [Ahmadi Kakavandi, Amini, 2010]

Idea: Introduce a point on M to “act as” 0.

letm € C C M begivenand F: C — R.
The m-Fenchel conjugate F*: 7, M — R is defined by

Fr(Em) = up {(&m, X) — F(exp,, X)},

C,m
where
Lom ={X € TmM|qg=-exp,, X €Cand|X|,=4d(g,p)}
Let m’ € C.

The mm/-Fenchel-biconjugate E** ,: C — R is given by

FTT’:;YL’ (p> = SUB { <’£m’7 log'rn’ p> - Frtz (Pm'ﬁm gm’) } .

/
m € m/

13



Properties of the m-Fenchel Conjugate

- F} is convex on 7} M

- If F(p) < G(p) holds forallp € C
then Fy (&) > G}, (&) holds for all &, € T} M

- If G(z) = F(z) 4+ a for some a € R holds forallp e C

then G}, (&) = F}(€m) — a holds for all &, € TiM
- If G(p) = AF(p), for some A > 0, holds forallp e C

then G, (&m) = AE) (§m/A) holds for all &, € T M
- Itholds Fjx, < FonC

- especially the Fenchel-Moreau theorem:
If F* convex, proper, Isc then F* = F on C.

14



Properties of the m-Fenchel Conjugate Il

The Fenchel-Young inequality holds, i.e.,
F(p) + Fr(&m) > (ém,log,, p) forall peC,&n € TiM

We can characterize subdifferentials

- For a proper, convex function F

§p € OMF (p) & F(p) + . (Pposm &p) = (Pp—sm &p, 108, D)

- For a proper, convex, lsc function F

& € OMF (p) & log,, p € OF ), (Ppsm &p)-

15



3. The Chambolle-Pock Algorithm




The Euclidean Chambolle-Pock Algorithm

[Chambolle, Pock, 2011]

From the pair of primal-dual problems

min f(z) + g(Kz), K linear,
T€ER™

o — JH(=K"¢) = g"(&)

we obtain for f, g proper convex, lsc the
optimality conditions (OC) for a solution (&, £) as

of > —K*¢

dg*(§)> Kz



The Euclidean Chambolle-Pock Algorithm

[Chambolle, Pock, 2011]

From the pair of primal-dual problems

min f(z) + g(Kz), K linear,
z€R™

o — JH(=K"¢) = g"(&)

we obtain for f, g proper convex, lsc the

Chambolle-Pock Algorithm. with o > 0,7 > 0,0 € R

2D — prox, (x(k') _ UK*gUf))
gkt — proX, . (f(k) + TK.T(k—H))
é(k+1) _ §(k+1) 4 9(5(k+w) _ g(k))



Proximal Map

For F: M — R and X > 0 we define the Proximal Map as

[Moreau, 1965; Rockafellar, 1976; Ferreira, Oliveira, 2002]

prox, p(p) := arg min d(u, p)* + AF (u).
ueM

I For a Minimizer u* of F' we have prox,p(u*) = u*.
- For F proper, convex, Isc:

- the proximal map is unique.

- PPA zj, = prox, p(zr—1) converges to arg min F’

- g = prox,p(p) Is equivalent to

]

X(logqp)b € IMF(q)



Saddle Point Formulation

From

gleig F(p) + G(A(p))

we derive the saddle point formulation for the n-Fenchel
conjugate of G as

i n,l nA F _G: nj.
r;lelggnrg%?/v@ og, A(p)) + F(p) (&)

For Optimality Conditions and the Dual Prolem: What's A*?

Approach. Linearization:

onR™: [Valkonen, 2014]

A(p) =~ expp(m) DA(m)[log,, p]



Optimality Conditions for the Saddle Point Problem

The first order opimality conditions for a saddle point of the
exact saddle point problem

(7,&n) €C X TN
can be formally derived as

Pmp — (DA €] € OMF (D)
log,, A(p) € OG} (&)

Advantage. By only linearizing for the adjoint, we stay closer to
the original problem.

19



Linearization & the Dual Problem

Linearizing the primal problem obtain e.g. for n = A(m)

Primal Problem.

min F(p) + G(expa(ry DA(m) log,, )

Saddle Point Problem.

I;IG%I ﬁnrg%iiN(DA(m)*[ﬁn],lOgm p) + F(p) — G, (&)

Dual Problem.

énrg%?N_F;m(_DA(m)*[gn]) B G;kz(gn)

and a classical duality theory including weak duality.

20



Optimality Conditions for the Saddle Point Problem

The first order optimality conditions for a saddle point of the
linearized problem

(5,&n) € C X ToN

can be formally derived as

~

Pinsp — (DA)*[€n] € OMmF (D)
DA(m)[log,, p] € 9G} (&)

Advantage. A complete duality theory and a certain symmetry
in the optimality conditions.

For M =R? and K = A linear both approaches yield the
classical conditions
—K*€ € OF(p)

~

Kp € 9G*(©) 2



The exact Riemannian Chambolle-Pock Algorithm (eRCPA)

Input: m,p¥ € C c M, n=A(m), e TIN,
and parameters o, 7, 0 > 0
1 k<0
2: ]3(0) — p<o)
3. while not converged do

4 < Prox,gs ( + T( log,, A(ﬁ(’“))) )

5 p*+) « prox,_ g <epr(k-)<Pm*>p(l\:) —oDA(m)*] ] ﬁ))
6: ]j(k—H) <= eXPpy(k+1) (—9 Ing(kJﬂ) p(kv))

7: k+—k+1

8. end while

Output: p(*)

22



Generalizations & Variants of the RCPA

Classically [Chambolle, Pock, 2011]

- change o0 = oy, 7 = 71, 0 = 6, during the iterations
- introduce an acceleration ~
- relax dual ¢ instead of primal p (switches lines 4 and 5)

Furthermore we [Bergmann, Herzog, et al, 2019
- introduce the [RCPA: linearize A, too, i.e.
log, AP*) = Pa(m)—n DA(m)[log,, pV]
- choose n # A(m) introduces a parallel transport
DAm)*EF*V] = DA(M)* [Prssagm) €07
- change m = m®, n = n(®) during the iterations

23



The Linearized Riemannian Chambolle-Pock Algorithm (IRCPA)

Input: m,p(® € C c M, n=A(m), € TIN,
and parameters o, 7, 0 > 0
1 k<« 0
2: —
3. while not converged do

I p(/\’?—H) < prox,p <epr(}g)(Pm_>])(k) - O'DA(m)*[ } ﬁ))

5:  ProX,g» ( + T(DA(m) [log,, p(k“)])) )
6 EF e gl ey,

7: k<+ k+1

8: end while

Output: p(*)

24



The Linearized RCPA with Dual Relaxation

We introduce for ease of notation

ﬁ(k) = €XPp(k) (Pmap(k) _(U(DA(m))*[é’k)])ﬁ)

for the linearized Riemannian Chambolle Pock
with

&9 ) +0(el) — €8 7).

Especially for # = 1 we obtain

&9 =26 —gF .

25



A Conjecture

We define
Ok) = @™, 5) + (€D, DA(m)[G),

where

(k-+1) —Pﬁ(k)—)p(k) lOgﬁ(k) ﬁ) _logm p(k—H) +logm ]3\7

Ck = Pyi) sy (10, P
and p is a minimizer of the primal problem.

Remark.
For M = R% ¢, = 5% — p®) = —o(DA(m))* €] = C(k) = 0.

Conjecture.
Assume o7 < |[DA(m)||%. Then C(k) > 0 forallk > K, K € N.

26



Convergence of the IRCPA

Theorem. [Bergmann, Herzog, et al,, 2019]

Let M, N be Hadamard. Assume that the linearized problem

;Ie“fi gfél%%«DA(m))*[g"]’ log,,, p) + F(p) — G, (&n).

has a saddle point (p, én). Choose o, 7 such that
ot < |DA(m)|?
and assume that C(k) > 0 for all K > K. Then it holds

1. the sequence (p®, £%) remains bounded,

2. there exists a saddle-point (p,&),)
such that p® — p’ and ¢ — ¢’

27



4. Numerical Examples




The /2-TV Model

[Rudin, Osher, Fatemi, 1992; Lellmann et al,, 2013; Weinmann, Demaret, Storath, 2014]

For a manifold-valued image f € M, M = N% % we compute

1
argmin —F(p) + G(A(p)), a>0,
peM &

with
- data term F(p) = 1d%,(p, f)
- “forward differences” A: M — (TN )1 =12

A :(1 e lam, o )
p (p) (108, Piters 108y, Pirer) i€ {1t =1} % {1, dp—1}

- prior G(X) = ||X||g,41 Similar to a collaborative TV

[Duran et al,, 2016]

28



The d x d Symmetric Positive Definite Matrices P(d).

P(d) = {pe R™ | 2Tpz >0 forall 0 #z e R}

Tangent Space. 7,P(d) = {p? Xp?|X € R™4 with X = XT}}
Riemannian Metric. (X,Y), = tr(p~' Xp~'Y),
Exponential Map. exp, X = p% Exp(pf%pr%)p%,

where Exp is the matrix exponential.
Parallel Transport. P,_,,(X) = p%X/p_%Xp_%X/p%,

_1 _1
X' = Exp(3p~ 7 log,(q)p~?),
where log is the logarithmic map.

The main tool to compute the matrix square root is the SVD.
29



Numerical Example for a P(3)-valued Image

(11000

VOWHL
[0

P(3)-valued data. anisotropic TV, a = 6.

- In each pixel we have a symmetric positive definite matrix

- Applications: denoising/inpainting e.g. of DT-MRI data

30



Numerical Example for a P(3)-valued Image

3874

Cost

1 10 100 1,000
lterations

Approach. CPPA as benchmark

CPPA PDRA LRCPA
M=7 n=058 oc=7=04
parameters A=093 y=02,m=1
iterations 4000 122 113
runtime 1235s.  380s. 96.15.

30



The Sphere S? as a Manifold

g e e !

st = {p e R | ||p|| =1}

Tangent Space. 7,5% = {X € R*'|XTp = 0}
Riemannian Metric. (X,Y"), = (X,Y) from the embedding
Distance. dsa(p, q) = acos((p, q))

Exponential Map. exp, X = cos(|| X |2)p + sin([| X [12) 1=

Parallel Transport. P, ,,(X) = X — {log, 3.X )= (log, q + log, p).

2
dgd (p,9) 31
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Base point Effect on S?-valued data
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5. Summary & Conclusion




Summary & Outlook

Summary.
- We introduced a duality framework
on Riemannian manifolds
- We derived a Riemannian Chambolle Pock Algorithm

- Numerical example illustrates performance
Outlook.

- investigate C'(k)

- strategies for choosing m, n (adaptively)

- investigate linearization error

- extend algorithm to graph-structured data

33



Reproducible Research

The algorithm will be published in Manopt.j1, a Julia Package
available at http://manoptjl.org.

Goal.

Being able to use an(y) algorithm for a(ny) model directly on
a(ny) manifold easily and efficiently.

Alternatives.

Manopt - manopt.org pymanopt - pymanopt.github.io
(Matlab, N. Boumal) (Python, S. Weichwald et. al.)
Example.

pOpt = linearizedChambollePock(M, N, cost,
p, & m, n, DA, AdjDA, proxF, proxConjG, o, 7)

34
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