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1. Introduction



Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals,
GPS data, wind, flow,...

- Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

- Electron backscattered
diffraction (EBSD)

INSAR-Data of Mt. Vesuvius

[Rocca, Prati, Guarnieri, 1997]

phase-valued data, M = §'
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Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals,
GPS data, wind, flow,...

- Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

- Electron backscattered ) .
National elevation dataset

diffraction (EBS D) [Gesch et al, 2009]
directional data, M = §?



Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range
- Interferometric synthetic
aperture radar (InSAR)

- Surface normals,
GPS data, wind, flow,...

- Diffusion tensors in magnetic
resonance imaging (DT-MRI),

diffusion tensors in human brain

covariance matrices from the Camino dataset
http://cmic.cs.ucl.ac.uk/camino
- Electron backscattered sym. pos. def. matrices, M = SPD(3)

diffraction (EBSD)


http://cmic.cs.ucl.ac.uk/camino

Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals,
GPS data, wind, flow,...

- Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

- Electron backscattered

horizontal slice #28
diffraction (EBSD) from the Camino dataset

http://cmic.cs.uclac.uk/camino

sym. pos. def. matrices, M = SPD(3)


http://cmic.cs.ucl.ac.uk/camino

Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic
aperture radar (InSAR)

- Surface normals,
GPS data, wind, flow,...

- Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

- Electron backscattered
diffraction (EBSD)

EBSD example from the MTEX toolbox

[Bachmann, Hielscher, since 2005]

Rotations (mod. symmetry),
M =S0@3)(/S). >



Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

- Interferometric synthetic

Common properties
aperture radar (InSAR) HISY

- Range of values is a

- Surface normals, . ) )
Riemannian manifold

GPS data, wind, flow,... . o
- Tasks from “classical

- Diffusion tensors in magnetic image processing, e.g.
resonance imaging (DT-MRI), . denoising
covariance matrices - inpainting

- Electron backscattered - interpolation
diffraction (EBSD) )



A d-dimensional Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a ‘suitable’ collection of
charts, that identify subsets of M with open subsets of R? and

a continuously varying inner product on the tangential spaces.
[Absil, Mahony, Sepulchre, 2008]



A d-dimensional Riemannian Manifold M

Geodesic g(-; p,q) shortest path (on M) between p,q € M
Tangent space T, M at p, with inner product (-, Vp
Logarithmic map log, ¢ = ¢(0;p, q) “speed towards ¢"
Exponential map exp, X= g(1), where g(0) = p, 9(0) = X
Parallel transport PT,,_,,(Y) of Y € T, M along g(-;p, q)



Variational Methods on Manifolds

Variational methods model a trade-off between staying close
to the data and minimizing a certain property

E(p) =D(p; f) + aR(p), peM

- a>0isaweight

- M is a Riemannian manifold
- given (input) data f € M

- data or similarity term D(p; f)
- regularizer / prior R(p)



Optimization on Manifolds

Let M and N be Riemannian Manifolds and £: N/ — R.

Consider the optimization problem

argmin €(p)
peN

where £ is

- (maybe) non-smooth

- (locally) convex
- high-dimensional,
- a manifold valued signal, N' = M
- a manifold-valued image, N' = Mdxd
- decomposable £ = F + G in two (or even more)
summands



A Signal of Cyclic Data

T 1

0 . i i P !
- Afunction f: [0,1 — S'is sampled = fo = (f5.)?%
- Data f stems from the gray plot via modulo

* Jumps > m at = and 1¢ just from choice of representation



T 1

A Signal of Cyclic Data

0 |

w
= 4L

- A function f: [0,1] — S'is sampled = fo = (f0,:)2%0
- Noise: wrapped Gaussian, o = 0.2
* N0isy fo = (fo +n)2r



T 1

A Signal of Cyclic Data

« |3 :
—7 T v
-7 1 2 et

O 1 1

3
A

- Comparison of fo & fn width Ir
- Denoised with CPPA and realvalued TV;, (o = 2, 8 = 0)
- Artefacts at the “jumps that are none” from representation
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A Signal of Cyclic Data

0 o :
- Comparison of fo & fn width 1 '

- Denoised with CPPA and TV, (a = £, 3 =0)

- but: stair caising



™

A Signal of Cyclic Data

0 : r

- Comparison of fo & fn width fr
- Denoised with CPPA and TV, (e =0, 3 = 3)
- but: problems in constant areas

3
A



™

A Signal of Cyclic Data

0 ; o :
- Comparison of fo & fn width f3 '

- Denoised with CPPA and TV & TV, (a = £, B8 = 3)

- combined: smallest mean squarred error.



2. Second Order Differences




First and Second Order Differences

On R™ Riemannian manifold M
- liney(t) = x4+ t(y — x) - geodesic path g(¢;p, q)

- distance ||z — y||2 - geodesic distance d: M x M — R

- first order model - first order model

[Rudin, Osher, Fatemi, 1992] [Strekalovskiy, Cremers, 2011; Lellmann et al,, 2013,
Weinmann, Demaret, Storath, 2014]

ZHfz “1H2+O‘Z lus=sisalz Zd(fi,uz')2+04 Z d(ui, wit1)

1€V 1€G\{N}
IS 1€G\{N}
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First and Second Order Differences

On R™
- liney(t) =x 4+ t(y — x)
- distance ||z — y||2
- first order model

[Rudin, Osher, Fatemi, 1992]

Y oIfimwild+a) lui—uil2

[1S% 1€G\{N}
- second oder difference

2[13(z +2) =yl

Y

c(x, z)

Riemannian manifold M

- geodesic path g(¢; p, q)
- geodesic distance d: M x M — R

- first order model

[Strekalovskiy, Cremers, 2011; Lellmann et al,, 2013,
Weinmann, Demaret, Storath, 2014]

Yo d(fiu) +a Yy d(ui i)

eV 1€G\{N}
- Idea: mid point formulation
Y
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First and Second Order Differences

On R™
- liney(t) =x 4+ t(y — x)
- distance ||z — y||2
- first order model

[Rudin, Osher, Fatemi, 1992]

Y oIfimwild+a) lui—uil2

[1S% 1€G\{N}
- second oder difference

2||e(x, 2) — yll2

Y

c(x, z)

Riemannian manifold M

- geodesic path g(¢; p, q)
- geodesic distance d: M x M — R

- first order model

[Strekalovskiy, Cremers, 2011; Lellmann et al,, 2013,
Weinmann, Demaret, Storath, 2014]

Yo d(fiu) +a Yy d(ui i)

eV 1€G\{N}

- Idea: mid point formulation




Absolute Second Order Difference

We denote the set of mid points between z,z € M as
Gy = {c EM:c= g(%;x,z) for any geodesic g(+;x, z): [0,1] — /\/l}

and define the Absolute Second Order Difference

[RB, Laus, et al,, 2014; Bacak et al., 2016]

dy(z,y,2) = min d(c,y), x,y,z € M.
CECI,Z
For Optimization we need the differential and gradient of d,
with respect to all its three arguments. For example for the first
argument we have a chain rule of the distance and g(3;-, z)



Differential and Gradient

The differential Dpf = Df: TM — R of a real-valued function
f: M — Ris the push-forward of f.

For a composition F(p) = (g o h)(p) = g(h(p)) of two functions
g,h: M — M the chain rule reads

DyF[X] = Dygyg[DphlX]],

where Dph[X] € Ty )M and D F[X] € Tpp) M.
The gradient Vf: M — T M is the tangent vector fulfilling

(Vamf(p),Y)p = Df(p)[Y] forallY € T,M,

le. Vf(p) € T,M is a tangent vector at p.



The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation
Lo x(s,t) = expy . (5)(tY (s)), s € (—e,¢), t €[0,1],e > 0.

is used to define the = 2Ty x(s,1)]s=0.

Then the differential reads D,g(t; -, q)[X] = . 10



Implementing Jacobi Fields on Symmetric Spaces

A manifold is symmetric if for every geodesic g and every
p € M the mapping g(t) — g(—t) is an isometry at least locally
around p = ¢(0).

Then the system of ODEs characterizing the Jacobi field
2

Tplex + RUpx, ) =0, Jyx(0) =X, Jox(1) =0

- has constant coefficients

- one can diagonalize the curvature tensor R,

- let k¢ denote its eigenvalues

- let {X,..., X4} € T, M be an ONB to these eigenvalues
with X7 = log,, q.

- parallel transport Z;(t) = PT X5 j=1...,d

p—=9(t;p,q)
1"



Implementing Jacobi Fields on Symmetric Spaces Il

d
Decompose X = Zng. Then

=1

d
Dyg(t; p, 9)[X] = Jox(t) = > medgx, (1),
=1

with
sinh (dg(’lft)\/ilﬁg) —

sinh(dg+/—kKy) :‘f(t) if ke <0,

— ¢ sin(dg(1—t)\/ke ) — .
Jg.x,(t) = WLZ(” if kg > 0,
(1= 1)E4(?) if kg =0,

where d, = d(p, g) is the length of the geodesic.

12



Implementing the Gradient Using Adjoint Jacobi Fields.

The adjoint Jacobi fields

J* (t): Tg(t;p,q)M — TpM

9,

are characterized by

(Jo.x (1), Y)g) = (X, Iy (t)p, forall X € ToM, Y € Ty, g M.

- computed using the same ODEs
= calculate gradient of f(z) = d(y,c),c = g(3;,2), as
log.y
~llog. y]le

- the gradient of iterated evaluations of geodesics
= (sum of) composition of (adjoint) Jacobi fields

Vi@)=Jov(3), g9=g(s2,2), Y =

13



3. Second Order Total Variation




A Second Order TV-type Model on Manifolds

For M-valued signals f we can hence define

E(u) =) d(fi,u)’+a ) dlus, ui)+8 Y do(uir,ui, i)

% i€G\{N} i€G\{1,N}

14



A Second Order TV-type Model on Manifolds

For M-valued signals f we can hence define

E(u) =) d(fi,u)’+a ) dlus, ui)+8 Y do(uir,ui, i)

i€y i€G\{N} i€G\{1,N}
For images additionally: use

lw—z+y -zl =2|3(w+y) — 5(z+ 2)|2 for
Absolute Second Order Mixed Difference

d1,1(w,x,y,z) = cec mianec d(C, 5)7 w,,Y, 2 € M.
W,y T,z

14



Proximal Map

For ¢: M™ — (—o0,+00] and A > 0 we define the Proximal

Ma p as [Moreau, 1965; Rockafellar, 1976; Ferreira, Oliveira, 2002]

prox,,(p) —arg/\r/nlln Zd ui, pi)? + Ap(u).
ueMm

I For a Minimizer u* of ¢ we have prox,,(u*) = u*.

- For ¢: R™ — R proper, convex, lower semicontinuous:
- the proximal map is unique.
* PPA z;, = prox,, (7—1) converges to arg min ¢

- For ¢ = &€ not that useful

15



The Cyclic Proximal Point Algorithm

(&
Foro =@ the
=1

Cyclic Proximal Point-Algorithmus (CPPA) reads

Bertsekas, 2011; Bacak, 2014]
p* ) = prox, ., (0**e)), 1=0,...,c=1, k=0,1,...
On a Hadamard manifold M:

convergence to a minimizer of ¢ if

- all ¢; proper, convex, lower semicontinuous
* { Mk tren € L(N)\4(N).

Ansatz.
- efficient Proximal Maps for every summand of £(u).

- speed up by parallelization



Proximal Maps for Distance and TV summands

Let g(:;p,q): [0,1] — M be a geodesic between p,q € M.
Theorem (Distance term) [Ferreira, Oliveira, 2002]
For ¢(p) = d%(p, f) with fixed f € M we have

proxy,(p) (M

(T3 75" )

Theorem (FirSt Order Difference Term) [Weinmann, Demaret, Storath, 2014]
For ¢(p,q) = d(p, q) we have

prox,,(p, ¢) = (9(t;p,0), 9(1 — t;p, q))
with

L o A< 3d(,q)
else.



Proximal Maps for the TV, Summands

To compute

3

.1 )
prox g, (p) = aﬁﬁ;n{2 Z d(ui, pi)” + Ada(ur, up, U3)}

=1

We have

- a closed form solution for M = S! [RB, Laus, et al, 2014]
- use a sub gradient descent (as inner problem) with

Vaedy = (Vauda(,p2,03), Voarda(pr, - p3), Vuda(pr, p2, )
where
log,, c(p1,p3)

- HlogpQ C(p1ap3)||112
: deZ('ap2ap3) and ana[ogous"y deZ(p%p% )
using (adjoint) Jacobi fields and a chain rule [Back et al, 2016]

* Vado(pr, - p3)(y) = € TyM



Bernoulli’'s Lemniscate on the sphere S?

av?2
~(t) = sz(t\)[ﬁ(cos(t),cos(t) sin(t),1)T, t €10,2n],a =

Generate a sphere-valued signal by

75(t) = expp(1(1)), p = (0,0, Nt

noisy lemniscate of Bernoulli on S?, Gaussian noise, o = =, on T,S?.

307

T
242

19



Bernoulli’'s Lemniscate on the sphere S?

av?2 T

v(t) == —5———(cos(t), cos(t) sin(t),1) ", t€[0,2n],a= 27T

sin?(t) 4 1
Generate a sphere-valued signal by

vs(t) = exp,(v(t)),p = (0,0, )"

reconstruction with TV;, o = 0.21, MAE = 4.08 x 1072

19



Bernoulli’'s Lemniscate on the sphere S?

av?2 .
~(t) = m(cos(t),cos(t) 51n(t),1)T, t €10,2n],a =

Generate a sphere-valued signal by

vs(t) = exp,(v(t)),p = (0,0, )"

T
242

reconstruction with TV,, &« = 0, 8 = 10, MAE = 3.66 x 1072 L



Bernoulli’'s Lemniscate on the sphere S?

av?2 .
~(t) = m(cos(t),cos(t) 51n(t),1)T, t €10,2n],a =

Generate a sphere-valued signal by

vs(t) = exp,(v(t)),p = (0,0, )"

T
242

reconstruction with TVy & TV,, a = 0.16, 8 = 12.4, MAE = 3.27 x 102 19



Inpainting of P(3)-valued Images

Draw symmetric positive definite 3 x 3 matrices as ellipsoids
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(a lot of) data
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4. Acceleration of Bézier Curves




Data Fitting on Manifolds

Given data points dp,...,d, on a Riemannian manifold M and
time points ¢; € I, find a “nice” curve y: I — M, v € T, such
that v(¢;) = d, (interpolation) or ~(t;) ~ d; (approximation).

21



Data Fitting on Manifolds

Given data points dp,...,d, on a Riemannian manifold M and
time points ¢; € I, find a “nice” curve y: I — M, v € T, such
that v(¢;) = d, (interpolation) or ~(t;) ~ d; (approximation).

- I set of geodesics & approximation: geodesic regression

[Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]

- I" Sobolev space of curves: Inifinite-dimensional problem

[Samir et al, 2012]

- I' composite Bézier curves; LSs in tangent spaces

[Arnould et al,, 2015; Gousenbourger, Massart, Absil, 2018]

- Discretized curve, I' = MY,

[Boumal, Absil, 2011]

21



Data Fitting on Manifolds

Given data points dp,...,d, on a Riemannian manifold M and
time points ¢; € I, find a “nice” curve y: I — M, v € T, such
that v(¢;) = d, (interpolation) or ~(t;) ~ d; (approximation).

- I set of geodesics & approximation: geodesic regression

[Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]

- I" Sobolev space of curves: Inifinite-dimensional problem

[Samir et al, 2012]

- I' composite Bézier curves; LSs in tangent spaces

[Arnould et al,, 2015; Gousenbourger, Massart, Absil, 2018]

- Discretized curve, T = MY, [Boumal, Absil, 201i]

This talk.

“nice” means minimal (discretized) acceleration (“as straight as
possible”) for I' the set of composite Bézier curves.
Closed form solution for M = R% Natural (cubic) splines.

21



(Euclidean) Bézier Curves

Definition . _ [Bézier, 1962]
A Bezier curve B of degree K € Ny is a function

Br: [0,1] — R? parametrized by control points by, ...,bx € R?
and defined by

K
Bk (t;bo,. .., bk) =Y _b;Bjk(t),
=0

[Bernstein, 1912]

where B; i = (%)#/(1— ¢)¥~7 are the Bernstein polynomials of
degree K.

Evaluation via Casteljau’s algorithm. [de Casteljau, 1959]

22



Illustration of de Casteljau’s Algorithm

The set of control points bg, by, by, bs.

23



Illustration of de Casteljau’s Algorithm

Evaluate line segments at t = 1, obtain =, 2", 2.
23



Illustration of de Casteljau’s Algorithm

(o)
b3

Repeat evaluation for new line segments to obtain xg],x?].

23



Illustration of de Casteljau’s Algorithm

b1 1
o Uq .
L
b,
)
2] 1]
x§ L
i z5 R
o
d

@]

b3

Repeat for the last segment to obtain Bs(3; bo, b1, by, b3) = xg’].
23



Illustration of de Casteljau’s Algorithm

b
o , ,.P,
QO
. :
A1 o\l
o~ © l‘gﬂ o

(@]

b3

Same procedure for evaluation of 63(%; bo, b1, by, b3).
23



Illustration of de Casteljau’s Algorithm

by
P 2] 1]
ab
Im xo ° CW) bz
O (0]
(o]
O
xg} 74
(o]
bo '1‘[71]
0]
(o]
b3

Same procedure for evaluation of 63( ; 0o, b1, b2, b3).
23



Illustration of de Casteljau’s Algorithm

by

b3

Complete curve Bs(t; bo, b1, by, b3).
23



Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R? is defined as

B (£:08,...,5%) ift € [0,1],

B(t) = ' ' .
Br(t —i;bp,...,b%), ifte(,i+1, i=1...,n—1

24



Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R? is defined as

60, b0 ift e [0,1],
B(t) = B (t; by | K)' | [0,7]
Br(t —i;bp,...,b%), ifte(,i+1, i=1...,n—1

Denote ith segment by B;(t) = Bk (t;bY, . .., b% ) and p; = b,

ob;
b50

bo = po




Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R? is defined as

B (£:08,...,5%) ift € [0,1],

B(t) = ' ' .
Br(t —i;bp,...,b%), ifte(,i+1, i=1...,n—1

Denote ith segment by B;(t) = Bk (t;bY, . .., b% ) and p; = b,

- continuous iff B;—1(1) = B;(0),i=1,...,n—1
= =0 =p;,i=1,...,n—1
+ continuously differentiable iff p; = 3(b%, + b%)

24



Bézier Curves on a Manifold

Definition. ] ) ) [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N.

The (generalized) Bézier curve of degree k, k < K, is defined as

/Bk(tv bOa o 7bk) - g(tﬁkf'I(tv bOa o 7bk71)76k71(t; b17 o 7bk))7

if k>0, and

Bo(t; bo) = bo.

25



Bézier Curves on a Manifold

Definition. ] ) ) [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N.

The (generalized) Bézier curve of degree k, k < K, is defined as
/Bk(tv bOa o 7bk) - g(tﬁkf'I(tv bOa o 7bk71)76k71(t; b17 o 7bk))7
if k>0, and

Bo(t; bo) = bo.

- Bézier curves B1(t; by, by) = g(t; bo, b1) are geodesics.
- composite Béezier curves B: [0,n] — M completely
analogue (using geodesics for line segments)

25



Bézier Curves on a Manifold

Definition. ) ) ) [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N

The (generalized) Bézier curve of degree k, k < K, is defined as
Br(t; bo, - - -, b) = g(t; Be—1(t; bo, - -, bk—1), Br—1(t; b1, - .., b)),
if k>0, and
Bo(t; bo) = bo.

The Riemannian composite Bezier curve B(t) is

- continuous iff B;_1(1) = B;(0),i=1,...,n—1
=0 = =p,i=1...,n—1
- continuously differentiable |ff pi = g(3;b% ", bY)

25



Bézier Curves on a Manifold

Definition. ) ) ) [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N.

The (generalized) Bézier curve of degree k, k < K, is defined as
Br(t; bo, - - -, b) = g(t; Be—1(t; bo, - -, bk—1), Br—1(t; b1, - .., b)),
if k>0, and
Bo(t; bo) = bo.

The Riemannian composite Bezier curve B(t) is

- continuous iff B;_1(1) = B;(0),i=1,...,n—1
=0 = =p,i=1...,n—1
- continuously differentiable iff &%, = g(2; ¢, p;).
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Illustration of a Composite Bézier Curve on the Sphere S?

The directions, e.g. log,,. b}, are now tangent vectors. -



A Variational Model for Data Fitting

Let dg,...,d, € M. A model for data fitting reads

D?B(t) 2
()H dt,  A>0,

A "
&)= 5 duE®.a+ [ 222,
k=0

where B € T is from the set of continuously differentiable
composite Bezier curve of degree K with n segments.
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A Variational Model for Data Fitting

Let dg,...,d, € M. A model for data fitting reads

D?B(t) HZ
dt? B

) — n
E(B) = 52%(3(@,@) +/O dt,  A>0,
k=0

where B € T is from the set of continuously differentiable
composite Bezier curve of degree K with n segments.

« Goal: find minimizer B* € T

- finite dimensional optimization problem
in the control points b; i.e. on ME with
- L=n(K-1)+2
- A — oo yields interpolation (py = dg) = L = n(K —2) +1
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A Variational Model for Data Fitting

Let dg,...,d, € M. A model for data fitting reads

D?B(t) HZ
dt? B

) — n
E(B) = 52%(3(@,@) +/O dt,  A>0,
k=0

where B € T is from the set of continuously differentiable
composite Bezier curve of degree K with n segments.

« Goal: find minimizer B* € T

- finite dimensional optimization problem
in the control points b; i.e. on ME with

c L=n(K—-1)+2
- A — oo yields interpolation (py = dg) = L = n(K —2) +1

- On M = R™: closed form solution, natural (cubic) splines

27



Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative

/n D2B(t)Hz dt~]§ Ad3[B(si_1), B(si), B(si11)]
o I dt?2 iy — Ay .
on equidistant points so, ..., sy with step size A; = s1 — so.

Evaluating £(B) consists of evaluation of geodesics and
squared (Riemannian) distances

- (N + 1)K geodesics to evaluate the Bézier segments
- N geodesics to evaluate the mid points

- N squared distances to obtain the second order absolute
finite differences squared
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Gradient of the Discretized Data Fitting Model

For the gradient of the discretized data fitting model

), dy) + sz Asd%[B(Si_O, B(s;), B(si41)] .

)\ n
E(B) =53 diu(Bk =
k=0 g

k=1
we

- identified first and last control points p; = b= ' = b}

- plug in the constraint b ', = g(2; bi, p;)
= Introduces a further chain rule for the differential
= reduces the number of optimization variables.

- concatenation of adjoint Jacobi fields (evaluated at the
points s;) yields the gradient V&.
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Gradient Descent on a Manifold

Let N/ = ML be the product manifold of M,

Input.

- EN =R,

- its gradient Vx/€,

- initial data ¢ = b e N/

- step sizes s > 0,k € N.
Output: G e V
k<« 0
repeat

q* ) exp w) (—sk V€ ()

k+k+1
until a stopping criterion is reached
return § := ¢
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Armijo Step Size Rule

Let ¢ = ¢'®) be an iterate from the gradient descent algorithm,
B,o0 € (0,1),a > 0.

Let m be the smallest positive integer such that

E(q) — E(exp,(—B™aVNE())) > aB8™alVNE(Q)llqg

holds. Set the step size s := f™a.
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Minimizing with Known Minimizer

Original

9.10-2 Absolute first order differences ||logg ;) B(ti+1)llB(1:)

3.1072

[T
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Minimizing with Known Minimizer

_—
P
~——

~

Original Minimized

9.10-2 Absolute first order differences ||logg ;) B(ti+1)llB(1:)

3.1072

[T



Interpolation by Bézier Curves with Minimal Acceleration.

A comp. Bezier curve (black) and its mnimizer (blue). .



Approximation by Bézier Curves with Minimal Acceleration.

In the following video A is slowly decreased from 10 to o.

The initial setting, A = 10. >



Approximation by Bézier Curves with Minimal Acceleration.

In the following video X is slowly decreased from 10 to o.
= — E,\~

Summary of reducing A from 10 (violet) to zero (yellow). 34



Comparison tO PreVious Approach [Gousenbourger, Massart, Absil, 2018]

This curve (dashed) is “too global” to be solved in a tangent

space (dotted) correctly, while our method (blue) still works.



An Example of Rotations M = SO(3)

Initialization with approach from composite splines
[Gousenbourger, Massart, Absil, 2018]

. =
= w y = w°© =: =
- 2= 50 S0 5 5N
‘:ﬁ - B s :?

TSP AR B R
] = - . «° ) =

Our method outperforms the approach of solving linear
systems in tangent spaces, but their approach can serve as an
initialization.
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Further Models and Algorithms

Models in manifold-valued imaging.

- Infimal Convolution [RB, Fitschen, et al,, 2017 ; RB, Fitschen, et al,, 2018]
* TGV [RB, Fitschen, et al,, 2018; Bredies et al., 2018]
- Nonlocal TV using the Graph Laplacian [RB, Tenbrinck, 2018]

- denoising using second order statistics [Laus et al, 2017]
Algorithms In manifold-valued imaging.

- Douglas—-Rachford splitting on Hadamard manifolds
[RB, Persch, Steidl, 2016]

- Half-quadratic Minimization (iteratively reweighted least

squa reS) [RB, Chan, et al,, 2016; Grohs, Sprecher, 2016]
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We defined second order differences on Riemannian
manifolds.

Two variational models: second order total variation and
minimizing the acceleration of a Bézier curve.

We further presented two algorithms to minimize the
corresponding Variational Models: Cyclic Proximal Point
Algorithm (for nonsmooth) and Gradient Descent (for smooth)
to minimize the model.
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Future Work

- further models (Bézier surfaces, manifolds with no closed
form for Jacobi fields,...)

- further algorithms, e.g. for constraint optimization

- further manifolds, e.g. infinite dimensional ones

Implement Algorithms in Manopt.jl an upcoming manifold
optimization toolbox for Julia paradigm:

Being able to use an(y) algorithm for a(ny) model directly on
a(ny) manifold efficiently.

..in an open source programming language.
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