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1. Introduction



Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

• Interferometric synthetic
aperture radar (InSAR)

• Surface normals,
GPS data, wind, flow,...

• Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

• Electron backscattered
diffraction (EBSD)

−π −π
2 0 π

2
π

InSAR-Data of Mt. Vesuvius
[Rocca, Prati, Guarnieri, 1997]

phase-valued data, M = S1
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Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

• Interferometric synthetic
aperture radar (InSAR)

• Surface normals,
GPS data, wind, flow,...

• Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

• Electron backscattered
diffraction (EBSD)

National elevation dataset
[Gesch et al., 2009]

directional data, M = S2
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Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

• Interferometric synthetic
aperture radar (InSAR)

• Surface normals,
GPS data, wind, flow,...

• Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

• Electron backscattered
diffraction (EBSD)

diffusion tensors in human brain
from the Camino dataset

http://cmic.cs.ucl.ac.uk/camino

sym. pos. def. matrices, M = SPD(3)
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Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

• Interferometric synthetic
aperture radar (InSAR)

• Surface normals,
GPS data, wind, flow,...

• Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

• Electron backscattered
diffraction (EBSD)

horizontal slice # 28
from the Camino dataset

http://cmic.cs.ucl.ac.uk/camino

sym. pos. def. matrices, M = SPD(3)
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Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

• Interferometric synthetic
aperture radar (InSAR)

• Surface normals,
GPS data, wind, flow,...

• Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

• Electron backscattered
diffraction (EBSD)

EBSD example from the MTEX toolbox
[Bachmann, Hielscher, since 2005]

Rotations (mod. symmetry),
M = SO(3)(/S). 2



Manifold-Valued Images

New data acquisition modalities lead to non-Euclidean range

• Interferometric synthetic
aperture radar (InSAR)

• Surface normals,
GPS data, wind, flow,...

• Diffusion tensors in magnetic
resonance imaging (DT-MRI),
covariance matrices

• Electron backscattered
diffraction (EBSD)

Common properties
• Range of values is a
Riemannian manifold

• Tasks from “classical”
image processing, e.g.

• denoising
• inpainting
• interpolation
• labeling
• deblurring
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A d-dimensional Riemannian ManifoldM

g(·; p, q)p q

expp
logp

X
logp p

TpM

M

Y
PTp→q(Y )

A d-dimensional Riemannian manifold can be informally
defined as a setM covered with a ‘suitable’ collection of

charts, that identify subsets ofM with open subsets of Rd and
a continuously varying inner product on the tangential spaces.

[Absil, Mahony, Sepulchre, 2008]

Geodesic g(·; p, q) shortest path (onM) between p, q ∈M
Tangent space TpM at p, with inner product (·, ·)p
Logarithmic map logp q = ġ(0; p, q) “speed towards q”
Exponential map exppX= g(1), where g(0) = p, ġ(0) = X

Parallel transport PTp→q(Y ) of Y ∈ TpM along g(·; p, q)
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Variational Methods on Manifolds

Variational methods model a trade-off between staying close
to the data and minimizing a certain property

E(p) = D(p; f) + αR(p), p ∈M

• α > 0 is a weight
• M is a Riemannian manifold
• given (input) data f ∈M
• data or similarity term D(p; f)

• regularizer / prior R(p)
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Optimization on Manifolds

LetM and N be Riemannian Manifolds and E : N → R.

Consider the optimization problem

argmin
p∈N

E(p)

where E is

• (maybe) non-smooth
• (locally) convex
• high-dimensional,

• a manifold valued signal, N =Md

• a manifold-valued image, N =Md1×d2

• decomposable E = F +G in two (or even more)
summands
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A Signal of Cyclic Data

0 1
4

1
2

3
4

1
−π

−π
2

0

π
2

π

• A function f : [0, 1]→ S1 is sampled⇒ fo = (fo,i)500i=1
• Data f stems from the gray plot via modulo
• Jumps > π at 5

16 and 11
16 just from choice of representation
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A Signal of Cyclic Data

0 1
4

1
2

3
4

1
−π

−π
2

0

π
2

π

• A function f : [0, 1]→ S1 is sampled⇒ fo = (fo,i)500i=1
• Noise: wrapped Gaussian, σ = 0.2

5
16

• noisy fn = (f0 + η)2π
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A Signal of Cyclic Data

0 1
4

1
2

3
4

1
−π

−π
2

0

π
2

π

• Comparison of fo & fn width fR

)500i=1

• Denoised with CPPA and realvalued TV1, (α = 3
4 , β = 0)

5
16

• Artefacts at the “jumps that are none“ from representation
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A Signal of Cyclic Data

0 1
4

1
2

3
4

1
−π

−π
2

0

π
2

π

• Comparison of fo & fn width f1

)500i=1

• Denoised with CPPA and TV1 (α = 3
4 , β = 0)

5
16

• but: stair caising
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A Signal of Cyclic Data

0 1
4

1
2

3
4

1
−π
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2
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2

π

• Comparison of fo & fn width f2

)500i=1

• Denoised with CPPA and TV2 (α = 0, β = 3
2 )

5
16

• but: problems in constant areas
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A Signal of Cyclic Data

0 1
4

1
2

3
4

1
−π

−π
2

0

π
2

π

• Comparison of fo & fn width f3

)500i=1

• Denoised with CPPA and TV1&TV2 (α = 1
4 , β = 3

4 )

5
16

• combined: smallest mean squarred error.
6



2. Second Order Differences



First and Second Order Differences

On Rn

• line γ(t) = x+ t(y − x)

• distance ∥x− y∥2
• first order model

[Rudin, Osher, Fatemi, 1992]∑
i∈V
∥fi−ui∥22+α

∑
i∈G\{N}

∥ui−ui+1∥2

• second oder difference

x

y

z

c(x, z)

Riemannian manifoldM
• geodesic path g(t; p, q)

• geodesic distance d :M×M→ R

• first order model
[Strekalovskiy, Cremers, 2011; Lellmann et al., 2013,

Weinmann, Demaret, Storath, 2014]∑
i∈V

d(fi, ui)
2 + α

∑
i∈G\{N}

d(ui, ui+1)

• How to model that onM?

x

y

z

c(x, z)

c′

M = S2
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Absolute Second Order Difference

We denote the set of mid points between x, z ∈M as

Cx,z :=
{
c ∈M : c = g( 12 ;x, z) for any geodesic g(·;x, z) : [0, 1]→M

}
and define the Absolute Second Order Difference

[RB, Laus, et al., 2014; Bačák et al., 2016]

d2(x, y, z) := min
c∈Cx,z

d(c, y), x, y, z ∈M.

For Optimization we need the differential and gradient of d2
with respect to all its three arguments. For example for the first
argument we have a chain rule of the distance and g( 12 ; ·, z)

8



Differential and Gradient

The differential Dpf = Df : TM→ R of a real-valued function
f :M→ R is the push-forward of f .

For a composition F (p) = (g ◦ h)(p) = g(h(p)) of two functions
g, h :M→M the chain rule reads

DpF [X] = Dh(p)g
[
Dph[X]

]
,

where Dph[X] ∈ Th(p)M and DpF [X] ∈ TF (p)M.

The gradient ∇f :M→ TM is the tangent vector fulfilling

(∇Mf(p), Y )p = Df(p)[Y ] for all Y ∈ TpM,

i.e. ∇f(p) ∈ TpM is a tangent vector at p.

9



The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation

Γg,X(s, t) := expgp,X(s)(tY (s)), s ∈ (−ε, ε), t ∈ [0, 1], ε > 0.

is used to define the Jacobi field Jg,X(t) = ∂
∂sΓg,X(s, t)|s=0.

X = Jg,X(0)

Jg,X(t)

Jg,ξ

g(·; p, q)

Y (0)
Y (ŝ)

p

q

Γg,X(ŝ, 0)

Γg,X(s, 0) = gp,X(s)

Γg,X(s, t)

g(t; p, q)

Then the differential reads Dpg(t; ·, q)[X] = Jg,X(t). 10



Implementing Jacobi Fields on Symmetric Spaces

A manifold is symmetric if for every geodesic g and every
p ∈M the mapping g(t) 7→ g(−t) is an isometry at least locally
around p = g(0).

Then the system of ODEs characterizing the Jacobi field
D2

dt2
Jg,X +R(Jg,X , ġ)ġ = 0, Jg,X(0) = X, Jg,X(1) = 0

• has constant coefficients
• one can diagonalize the curvature tensor R,
• let κℓ denote its eigenvalues
• let {X1, . . . , Xd} ⊆ TpM be an ONB to these eigenvalues
with X1 = logp q.

• parallel transport Ξj(t) = PTp→g(t;p,q)Xj , j = 1, . . . , d
11



Implementing Jacobi Fields on Symmetric Spaces II

Decompose X =

d∑
i=1

ηℓXℓ. Then

Dpg(t; p, q)[X] = Jg,X(t) =

d∑
ℓ=1

ηℓJg,Xℓ
(t),

with

Jg,Xℓ
(t) =


sinh

(
dg(1−t)

√
−κℓ

)
sinh(dg

√
−κℓ)

Ξℓ(t) if κℓ < 0,
sin
(
dg(1−t)

√
κℓ

)
sin(

√
κℓdg)

Ξℓ(t) if κℓ > 0,

(1− t)Ξℓ(t) if κℓ = 0,

where dg = d(p, q) is the length of the geodesic.
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Implementing the Gradient Using Adjoint Jacobi Fields.

The adjoint Jacobi fields

J∗
g,·(t) : Tg(t;p,q)M→ TpM

are characterized by

(Jg,X(t), Y )g(t) = (X, J∗
g,Y (t))p, for all X ∈ TpM, Y ∈ Tg(t;p,q)M.

• computed using the same ODEs
⇒ calculate gradient of f(x) = d

(
y, c

)
, c = g( 12 ;x, z), as

∇f(x) = J∗
g,Y (

1
2), g = g(·;x, z), Y = − logc y

∥logc y∥c
• the gradient of iterated evaluations of geodesics
⇒ (sum of) composition of (adjoint) Jacobi fields

13



3. Second Order Total Variation



A Second Order TV-type Model on Manifolds

ForM-valued signals f we can hence define

E(u) :=
∑
i∈V

d(fi, ui)
2+α

∑
i∈G\{N}

d(ui, ui+1)+β
∑

i∈G\{1,N}

d2(ui−1, ui, ui+1)

For images additionally: use
∥w − x+ y − z∥2 = 2∥ 12(w + y)− 1

2(x+ z)∥2 for
Absolute Second Order Mixed Difference

d1,1(w, x, y, z) := min
c∈Cw,y ,c̃∈Cx,z

d(c, c̃), w, x, y, z ∈M.

14
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Proximal Map

For φ :Mn → (−∞,+∞] and λ > 0 we define the Proximal
Map as [Moreau, 1965; Rockafellar, 1976; Ferreira, Oliveira, 2002]

proxλφ(p) := argmin
u∈Mn

1
2

n∑
i=1

d(ui, pi)
2 + λφ(u).

! For a Minimizer u∗ of φ we have proxλφ(u
∗) = u∗.

• For φ : Rn → R proper, convex, lower semicontinuous:
• the proximal map is unique.
• PPA xk = proxλφ(xk−1) converges to argminφ

• For φ = E not that useful

15



The Cyclic Proximal Point Algorithm

For φ =

c∑
l=1

φl the

Cyclic Proximal Point-Algorithmus (CPPA) reads [Bertsekas, 2011; Bačák, 2014]

p(k+
l+1
c

) = proxλkφl
(p(k+

l
c
)), l = 0, . . . , c− 1, k = 0, 1, . . .

On a Hadamard manifoldM:
convergence to a minimizer of φ if

• all φl proper, convex, lower semicontinuous
• {λk}k∈N ∈ ℓ2(N)\ℓ1(N).

Ansatz.
• efficient Proximal Maps for every summand of E(u).
• speed up by parallelization

16



Proximal Maps for Distance and TV summands

Let g(·; p, q) : [0, 1]→M be a geodesic between p, q ∈M.

Theorem (Distance term) [Ferreira, Oliveira, 2002]

For φ(p) = d2(p, f) with fixed f ∈M we have

proxλφ(p) = g
( λd(p, f)

1+ λd(p, f)
; p, f

)
Theorem (First Order Difference Term) [Weinmann, Demaret, Storath, 2014]
For φ(p, q) = d(p, q) we have

proxλφ(p, q) = (g(t; p, q), g(1− t; p, q))

with
t =

 λ
d(p,q) if λ < 1

2d(p, q)

1
2 else.

17



Proximal Maps for the TV2 Summands

To compute

proxλd2(p) = argmin
u∈M3

{ 1
2

3∑
i=1

d(ui, pi)
2 + λd2(u1, u2, u3)

}
We have

• a closed form solution forM = S1 [RB, Laus, et al., 2014]

• use a sub gradient descent (as inner problem) with

∇M3d2 = (∇Md2(·, p2, p3),∇Md2(p1, ·, p3),∇Md2(p1, p2, ·))T .

where
• ∇Md2(p1, ·, p3)(y) = −

logy c(p1, p3)

∥logp2 c(p1, p3)∥p2

∈ TyM

• ∇Md2(·, p2, p3) and analogously ∇Md2(p1, p2, ·)
using (adjoint) Jacobi fields and a chain rule [Bačák et al., 2016]
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Bernoulli’s Lemniscate on the sphere S2

γ(t) :=
a
√
2

sin2(t) + 1
(
cos(t), cos(t) sin(t), 1

)T
, t ∈ [0, 2π], a =

π

2
√
2
.

Generate a sphere-valued signal by

γS(t) = expp(γ(t)), p = (0, 0, 1)T

noisy lemniscate of Bernoulli on S2, Gaussian noise, σ = π
30 , on TpS2. 19
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Generate a sphere-valued signal by
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reconstruction with TV1, α = 0.21, MAE = 4.08× 10−2. 19
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reconstruction with TV2, α = 0, β = 10, MAE = 3.66× 10−2. 19



Bernoulli’s Lemniscate on the sphere S2

γ(t) :=
a
√
2

sin2(t) + 1
(
cos(t), cos(t) sin(t), 1

)T
, t ∈ [0, 2π], a =

π

2
√
2
.

Generate a sphere-valued signal by

γS(t) = expp(γ(t)), p = (0, 0, 1)T

reconstruction with TV1 & TV2, α = 0.16, β = 12.4, MAE = 3.27× 10−2. 19



Inpainting of P(3)-valued Images

Draw symmetric positive definite 3× 3 matrices as ellipsoids

original data

20



Inpainting of P(3)-valued Images

Draw symmetric positive definite 3× 3 matrices as ellipsoids

original data lost (a lot of) data

20



Inpainting of P(3)-valued Images

Draw symmetric positive definite 3× 3 matrices as ellipsoids

original data inpainted with α = β = 0.05,
MAE = 0.0929

20



Inpainting of P(3)-valued Images

Draw symmetric positive definite 3× 3 matrices as ellipsoids

original data inpainted with α = 0.1,
MAE = 0.0712

20



4. Acceleration of Bézier Curves



Data Fitting on Manifolds

Given data points d0, . . . , dn on a Riemannian manifoldM and
time points ti ∈ I , find a “nice” curve γ : I →M, γ ∈ Γ, such
that γ(ti) = di (interpolation) or γ(ti) ≈ di (approximation).

• Γ set of geodesics & approximation: geodesic regression
[Rentmeesters, 2011; Fletcher, 2013; Boumal, Absil, 2011]

• Γ Sobolev space of curves: Inifinite-dimensional problem
[Samir et al., 2012]

• Γ composite Bézier curves; LSs in tangent spaces
[Arnould et al., 2015; Gousenbourger, Massart, Absil, 2018]

• Discretized curve, Γ =MN , [Boumal, Absil, 2011]

This talk.
“nice” means minimal (discretized) acceleration (“as straight as
possible”) for Γ the set of composite Bézier curves.
Closed form solution forM = Rd: Natural (cubic) splines.

21
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(Euclidean) Bézier Curves

[Bézier, 1962]Definition
A Bézier curve βK of degree K ∈ N0 is a function
βK : [0, 1]→ Rd parametrized by control points b0, . . . , bK ∈ Rd

and defined by

βK(t; b0, . . . , bK) :=

K∑
j=0

bjBj,K(t),

[Bernstein, 1912]

where Bj,K =
(
K
j

)
tj(1− t)K−j are the Bernstein polynomials of

degree K .

Evaluation via Casteljau’s algorithm. [de Casteljau, 1959]
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Illustration of de Casteljau’s Algorithm

b0

b1

b2

b3
The set of control points b0, b1, b2, b3.
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1
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Illustration of de Casteljau’s Algorithm

b0

b1

b2

b3
Complete curve β3(t; b0, b1, b2, b3).
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Composite Bézier Curves

Definition
A composite Bezier curve B : [0, n]→ Rd is defined as

B(t) :=

βK(t; b00, . . . , b
0
K) if t ∈ [0, 1],

βK(t− i; bi0, . . . , b
i
K), if t ∈ (i, i+ 1], i = 1, . . . , n− 1.

Denote ith segment by Bi(t) = βK(t; bi0, . . . , b
i
K) and pi = bi0.

B0 B1 B2 B3 B4

t|
0

|
1

|
2

|
3

|
4

|
5

b00 = p0

b01

b02

p1
b11

b12

p2 b21

b22 p3

b31

b32

p4

b41

b42

p5 = b43

The composite Bezier curve B(t) is

• continuous iff Bi−1(1) = Bi(0), i = 1, . . . , n− 1
⇒ bi−1

K = bi0 = pi, i = 1, . . . , n− 1
• continuously differentiable iff pi = 1

2(b
i−1
K−1 + bi1)
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Bézier Curves on a Manifold

[Park, Ravani, 1995; Popiel, Noakes, 2007]Definition.
LetM be a Riemannian manifold and b0, . . . , bK ∈M, K ∈ N.

The (generalized) Bézier curve of degree k, k ≤ K , is defined as

βk(t; b0, . . . , bk) = g(t;βk−1(t; b0, . . . , bk−1), βk−1(t; b1, . . . , bk)),

if k > 0, and

β0(t; b0) = b0.

• Bézier curves β1(t; b0, b1) = g(t; b0, b1) are geodesics.
• composite Bézier curves B : [0, n]→M completely
analogue (using geodesics for line segments)

The Riemannian composite Bezier curve B(t) is

• continuous iff Bi−1(1) = Bi(0), i = 1, . . . , n− 1
⇒ bi−1

K = bi0 =: pi, i = 1, . . . , n− 1
• continuously differentiable iff
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Illustration of a Composite Bézier Curve on the Sphere S2

The directions, e.g. logpj b
1
j , are now tangent vectors. 26



A Variational Model for Data Fitting

Let d0, . . . , dn ∈M. A model for data fitting reads

E(B) =
λ

2

n∑
k=0

d2M(B(k), dk) +

∫ n

0

∥∥∥D2B(t)

dt2

∥∥∥2
B(t)

dt, λ > 0,

where B ∈ Γ is from the set of continuously differentiable
composite Bezier curve of degree K with n segments.

• Goal: find minimizer B∗ ∈ Γ

• finite dimensional optimization problem
in the control points bij , i.e. onML with

• L = n(K − 1) + 2
• λ→∞ yields interpolation (pk = dk)⇒ L = n(K − 2) + 1

• OnM = Rm: closed form solution, natural (cubic) splines
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Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative∫ n

0

∥∥∥D2B(t)

dt2

∥∥∥2
γ(t)

dt ≈
N−1∑
k=1

∆sd
2
2[B(si−1), B(si), B(si+1)]

∆4
s

.

on equidistant points s0, . . . , sN with step size ∆s = s1 − s0.

Evaluating E(B) consists of evaluation of geodesics and
squared (Riemannian) distances

• (N + 1)K geodesics to evaluate the Bézier segments
• N geodesics to evaluate the mid points
• N squared distances to obtain the second order absolute
finite differences squared

28



Gradient of the Discretized Data Fitting Model

For the gradient of the discretized data fitting model

E(B) =
λ

2

n∑
k=0

d2M(B(k), dk) +

N−1∑
k=1

∆sd
2
2[B(si−1), B(si), B(si+1)]

∆4
s

.

we

• identified first and last control points pi = bi−1
K = bi0

• plug in the constraint bi−1
K−1 = g(2; bi1, pi)

⇒ Introduces a further chain rule for the differential
⇒ reduces the number of optimization variables.

• concatenation of adjoint Jacobi fields (evaluated at the
points si) yields the gradient ∇NE .
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Gradient Descent on a Manifold

Let N =ML be the product manifold ofM,

Input.
• E : N → R,
• its gradient ∇NE ,
• initial data q(0) = b ∈ N
• step sizes sk > 0, k ∈ N.

Output: q̂ ∈ N
k ← 0
repeat
q(k+1) ← expq(k)

(
−sk∇NE(q(k))

)
k ← k + 1

until a stopping criterion is reached
return q̂ := q(k)

30



Armijo Step Size Rule

Let q = q(k) be an iterate from the gradient descent algorithm,
β, σ ∈ (0, 1), α > 0.

Let m be the smallest positive integer such that

E(q)− E
(
expq(−βmα∇NE(q))

)
≥ σβmα∥∇NE(q)∥q

holds. Set the step size sk := βmα.

31



Minimizing with Known Minimizer

Original

Minimized

0 1
2

1 3
2

2

3 · 10−2

9 · 10−2 Absolute first order differences ∥logB(ti) B(ti+1)∥B(ti)
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Interpolation by Bézier Curves with Minimal Acceleration.

A comp. Bezier curve (black) and its mnimizer (blue). 33



Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

The initial setting, λ = 10.
34



Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

Summary of reducing λ from 10 (violet) to zero (yellow).
34



Comparison to Previous Approach [Gousenbourger, Massart, Absil, 2018]

This curve (dashed) is “too global” to be solved in a tangent
space (dotted) correctly, while our method (blue) still works. 35



An Example of RotationsM = SO(3)

Initialization with approach from composite splines
[Gousenbourger, Massart, Absil, 2018]

Our method outperforms the approach of solving linear
systems in tangent spaces, but their approach can serve as an
initialization.
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Further Models and Algorithms

Models in manifold-valued imaging.

• Infimal Convolution [RB, Fitschen, et al., 2017 ; RB, Fitschen, et al., 2018]

• TGV [RB, Fitschen, et al., 2018; Bredies et al., 2018]

• Nonlocal TV using the Graph Laplacian [RB, Tenbrinck, 2018]

• denoising using second order statistics [Laus et al., 2017]

Algorithms In manifold-valued imaging.

• Douglas–Rachford splitting on Hadamard manifolds
[RB, Persch, Steidl, 2016]

• Half-quadratic Minimization (iteratively reweighted least
squares) [RB, Chan, et al., 2016; Grohs, Sprecher, 2016]
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Summary

We defined second order differences on Riemannian
manifolds.

Two variational models: second order total variation and
minimizing the acceleration of a Bézier curve.

We further presented two algorithms to minimize the
corresponding Variational Models: Cyclic Proximal Point
Algorithm (for nonsmooth) and Gradient Descent (for smooth)
to minimize the model.
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Future Work

• further models (Bézier surfaces, manifolds with no closed
form for Jacobi fields,...)

• further algorithms, e.g. for constraint optimization
• further manifolds, e.g. infinite dimensional ones

Implement Algorithms in Manopt.jl an upcoming manifold
optimization toolbox for Julia paradigm:

Being able to use an(y) algorithm for a(ny) model directly on
a(ny) manifold efficiently.

...in an open source programming language.

39



Selected References on Total Variation

 Bačák, M.; RB; Steidl, G.; Weinmann, A. (2016). “A Second Order Non-Smooth Variational
Model for Restoring Manifold-Valued Images”. SIAM Journal on Scientific Computing
38.1, A567–A597. doi: 10.1137/15M101988X.

 RB; Fitschen, J. H.; Persch, J.; Steidl, G. (2018). “Priors with Coupled First and Second
Order Differences for Manifold-Valued Image Processing”. Journal of Mathematical
Imaging and Vision 60.9, pp. 1459–1481. doi: 10.1007/s10851-018-0840-y.

 RB; Tenbrinck, D. (2018). “A graph framework for manifold-valued data”. SIAM Journal
on Imaging Sciences 11.1, pp. 325–360. doi: 10.1137/17M1118567.

 Laus, F.; Nikolova, M.; Persch, J.; Steidl, G. (2017). “A Nonlocal Denoising Algorithm for
Manifold-Valued Images Using Second Order Statistics”. SIAM Journal on Imaging
Sciences 10.1, pp. 416–448. doi: 10.1137/16M1087114.

 Lellmann, J.; Strekalovskiy, E.; Koetter, S.; Cremers, D. (2013). “Total variation
regularization for functions with values in a manifold”. IEEE ICCV 2013, pp. 2944–2951.
doi: 10.1109/ICCV.2013.366.

 Weinmann, A.; Demaret, L.; Storath, M. (2014). “Total variation regularization for
manifold-valued data”. SIAM Journal on Imaging Sciences 7.4, pp. 2226–2257. doi:
10.1137/130951075.

40

https://doi.org/10.1137/15M101988X
https://doi.org/10.1007/s10851-018-0840-y
https://doi.org/10.1137/17M1118567
https://doi.org/10.1137/16M1087114
https://doi.org/10.1109/ICCV.2013.366
https://doi.org/10.1137/130951075


Selected References on Bézier Curves

 Arnould, A.; Gousenbourger, P.-Y.; Samir, C.; Absil, P.-A.; Canis, M. (2015). “Fitting Smooth
Paths on Riemannian Manifolds : Endometrial Surface Reconstruction and
Preoperative MRI-Based Navigation”. GSI2015. Ed. by F.Nielsen; F.Barbaresco.
Springer International Publishing, pp. 491–498. doi:
10.1007/978-3-319-25040-3_53.

 RB; Gousenbourger, P.-Y. (2018). “A variational model for data fitting on manifolds by
minimizing the acceleration of a Bézier curve”. Frontiers in Applied Mathematics
and Statistics. doi: 10.3389/fams.2018.00059. arXiv: 1807.10090.

 Boumal, N.; Absil, P. A. (2011). “A discrete regression method on manifolds and its
application to data on SO(n)”. IFAC Proceedings Volumes (IFAC-PapersOnline).
Vol. 18. PART 1, pp. 2284–2289. doi: 10.3182/20110828-6-IT-1002.00542.

 Gousenbourger, P.-Y.; Massart, E.; Absil, P.-A. (2018). “Data fitting on manifolds with
composite Bézier-like curves and blended cubic splines”. Journal of Mathematical
Imaging and Vision. accepted. doi: 10.1007/s10851-018-0865-2.

 Samir, C.; Absil, P.-A.; Srivastava, A.; Klassen, E. (2012). “A Gradient-Descent Method for
Curve Fitting on Riemannian Manifolds”. Foundations of Computational
Mathematics 12.1, pp. 49–73. doi: 10.1007/s10208-011-9091-7.

 ronnybergmann.net/talks/2019-Los-Angeles-IPAM-SecondOrder.pdf 41

https://doi.org/10.1007/978-3-319-25040-3_53
https://doi.org/10.3389/fams.2018.00059
https://arxiv.org/abs/1807.10090
https://doi.org/10.3182/20110828-6-IT-1002.00542
https://doi.org/10.1007/s10851-018-0865-2
https://doi.org/10.1007/s10208-011-9091-7
http://ronnybergmann.net/talks/2019-Los-Angeles-IPAM-SecondOrder.pdf

	Introduction
	Second Order Differences
	Second Order Total Variation
	Acceleration of Bézier Curves

