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A d-dimensional Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a ‘suitable’ collection of
charts, that identify subsets of M with open subsets of R¢ and
a continously varying inner product on the tangent spaces.

[Absil, Mahony, Sepulchre, 2008] 2



A d-dimensional Riemannian Manifold M

Geodesic g(-; z,y) shortest curve (on M) between z,y € M
Tangent space T, M at z with inner product (-, ),

Tangent bundle TM = U,c (T, M

Logarithmic map log, vy = ¢(0; x,y) “speed towards 3"
Exponential map exp, &= (1), where v(0) = z, (0) = &,



Data Fitting on a Riemannian Manifold

Given data points dp,...,d, on a Riemannian manifold M and
time points ; € I, find a “nice” curve y: I — M, v € T, such
that v(¢;) = d, (interpolation) or ~(t;) ~ d; (approximation).



Data Fitting on a Riemannian Manifold

Given data points dp,...,d, on a Riemannian manifold M and
time points ; € I, find a “nice” curve y: I — M, v € T, such
that v(¢;) = d, (interpolation) or ~(t;) ~ d; (approximation).

- I" set of geodesics & approximation: geodesic regression
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- I" Sobolev space of curves: Inifinite-dimensional problem
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[Arnould et. al. "15; Gousenbourger, Massart, Absil, 18]

- Discretized curve, T' = MY,
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This talk

“nice” means minimal (discretized) acceleration (“as straight as
possible”) for I' the set of composite Bézier curves.

In Euclidean space: Natural cubic splines as closed form
solution.



(Euclidean) Bézier Curves

Definition . _ [Bézier, 62
A Bezier curve Bi of degree K € Ny is a function

Bx: [0,1] — R? parametrized by control points by, ...,bx € R®
and defined by

K
Bk (t;bo, ..., bk) = > _b;B;k(t),
=0

[Bernstein, 1912]

where B; i = (%)#/(1— ¢)¥~7 are the Bernstein polynomials of
degree K.

Evaluation via Casteljau’s algorithm. (de Casteljau, '50]



Illustration of de Casteljau’s Algorithm

The set of control points by, by, by, bs.



Illustration of de Casteljau’s Algorithm

b3
Evaluate line segments at ¢t = % obtain x{;%xﬁﬂ, x[zﬂ.



Illustration of de Casteljau’s Algorithm
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b3
Repeat evaluation for new line segments to obtain x{f],w?].



Illustration of de Casteljau’s Algorithm
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Repeat for the last segment to obtain 63(%; bo, b1, by, b3) = xE.



Illustration of de Casteljau’s Algorithm
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Same procedure for evaluation of 53(%; bo, b1, b, b3).



Illustration of de Casteljau’s Algorithm
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Illustration of de Casteljau’s Algorithm

b

b3
Complete curve B3(t; bo, by, by, b3).



Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R% is defined as

Br(t; 83, ..., b%) if t € [0,1],

B(t) = : , :
Br(t—i;bp,...,b%), ifte(@,i+1, i=1...,n-1



Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R% is defined as

Br(t; 83, ..., b%) if t € [0,1],

B(t) = : , :
Br(t—i;bp,...,b%), ifte(@,i+1, i=1...,n-1

Denote ith segment by B;(t) = Bk (t; by, . .., b%) and p; = bf.

ob;
0
b, |

by = po




Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R% is defined as

t:69, ..., b0 if t €10,1],
P UGN A O
Br(t—i;bp,...,b%), ifte(@,i+1, i=1...,n-1

Denote ith segment by B;(t) = Bk (t; by, . .., b%) and p; = bf.

- continuous iff B;_1(1) = B;(0),i=1,...,n—1
=0 =b=p,i=1...,n—1
- continuously differentiable iff p; = 1 (b4, + b%)
= written with connecting line segment p; = g(%,b’glwbﬁ)



Riemannian Bézier Curves

Deﬁnition. ) ) ) [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N.

The (generalized) Bézier curve of degree k, k < K, is defined as
Br(t; bo, - .., bi) = g(t; Be—1(t; bo, - .., bk—1), Be—1(t; b1, ..., b)),
if k>0, and

Bo(t; bo) = bo.



Riemannian Bézier Curves

Deﬁnition. ) ) ) [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N.

The (generalized) Bézier curve of degree k, k < K, is defined as

Br(t;bo, ..., bg) = g(t; Bre—1(t;bo, . .., bg—1), Be—1(t; b1, ..., bg)),

if k>0, and
Bo(t; bo) = bo.
- Bézier curves B1(t; by, by) = g(t; bo, b1) are geodesics.

- composite Bézier curves B: [0,n] — M completely
analogue (using geodesics for line segments)



Illustration of a Composite Bezier Curve on the Sphere

The directions, e.g. log,, b}, are now tangent vectors.



A Variational Model for Data Fitting

Let do,...,d, € M. A model for data fitting reads

D?B(t) 2
UH At A>0,

dt2 liB@)

B(B) =5 Bu(B®.d)+ [
k=0 0

where B € I' is from the set of continuously differentiable
composite Bezier curve of degree K with n segments.



A Variational Model for Data Fitting

Let do,...,d, € M. A model for data fitting reads

D?B(t) H2
dt2 liB@)

E(B):Ade\,l(B(k:)?dk)Jr/ At A>0,
2 0

k=0

where B € I' is from the set of continuously differentiable
composite Bezier curve of degree K with n segments.

- Goal: find minimizer B* € I’
+ finite dimensional optimization problem (in variables b?)
on M¥E with
cL=n(K—-1)+2
- A — oo yields interpolation (py = dg) = L =n(K —2) +1



Interlude: Second Order Differences on Manifolds

Second order difference: [RB et al, 2014; RB, Weinmann, 2016; Bacak et al, 2016]

do(z,y, 2) = min dap(e,y), z,y,2 € M,

ce Y]
C... mid point(s) of geodesic(s) g(-; z, 2)

3lle =2+l = 13 (@+2) =yl 2 Amley)
Y

c(z, 2)

10



Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative

/n D2B(t)Hz dt~]§ Ad3[B(si_1), B(si), B(si11)]
o I dt?2 iy — Ay .
on equidistant points so, ..., sy with step size A; = s1 — so.

Evaluating E(B) consists of evaluation of geodesics and
squared (Riemannian) distances

- (N + 1)K geodesics to evaluate the Bézier segments
- N geodesics to evaluate the mid points

- N distances to obtain the second order absolute finite
differences squared

1



Gradient and Chain Rule on a Manifold

The gradient Vap f(x) € TyM of f: M — R,z € M, is defined
as the tangent vector that fulfills

(Vamf(x),8)z = Do f[€] forall &eTxM.

For a composition F(z) = (g o h)(x) = g(h(x)) of two functions
g,h: M — M the chain rule reads forz €¢ M and £ € T, M as

where D, h[¢] € Tj;)M and D, F[€] € T, M.

12



The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation
Lye(s,t) = exp,, (5 (C(5)), s € (—e,e), t €10,1],e > 0.
is used to define the Jacobi field Jyg(t) = 2T, (s, t)]s=o.

T Tge(5,0) = Yae(s)
Then the differential reads D,g(t,-,y)[£] = Jg.(). 13



Implementing Jacobi Fields

- On symmetric manifolds, the Jacobi field can be evaluated
in closed form, since the PDE decouples into ODEs.

- The adjoint Jacobi fields Jj . (t) are characterized by
<Jg 5( ) > <£7 gn( )) T for a“€ S TTMvn S Tg(t;x,y)M

can be computed without extra efforts, i.e. the same ODEs
ocCCur.

= adjoint Jacobi fields can be used to calculate the gradient

- Gradient of iterated evaluations of geodesics can be
computed by composition of (adjoint) Jacobi fields

14



Gradient Descent on a Riemannian Manifold

Let N/ = ML be the product manifold of M,

Input.

- [ N =R,

- its gradient Vs f,

- initial data 2@ = b e NV

- step sizes s > 0,k € N.
Output: & € V
k<« 0
repeat

* ) exp i) (=5 Vi f(z®))

k+k+1
until a stopping criterion is reached
return i := z(*)

15



Armijo Step Size Rule

Let z = () be an iterate from the gradient descent algorithm,
B,0 € (0,1),a > 0.

Let m be the smallest positive integer such that
f(@) = fexpe (=BT aVn f(x)) > o™V f(@)|e

Set the step size s = ™a.



Minimizing with Known Minimizer
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Interpolation by Bezier Curves with Minimal Acceleration.

A comp. Bezier curve (black) and its mnimizer (blue).



Approximation by Bezier Curves with Minimal Acceleration.

In the following video X is slowly decreased from 10 to o.

The initial setting, A = 10. "



Approximation by Bezier Curves with Minimal Acceleration.

In the following video X is slowly decreased from 10 to o.
> 7= h\\.

19

Summary of the video.



Comparison tO PreVious Approach [Gousenbourger, Massart, Absil, 2018]

This curve (dashed) is “too global” to be solved in a tangent

space (dotted) correctly, while our method (blue) still works. ~ 2°



An Example of Rotations M = SO(3)

Initialization with approach from composite splines

[Gousenbourger, Massart, Absil, 2018]
i - 5
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Our method outperforms the approach of solving linear
systems in tangent spaces, but their approach can serve as an
initialization.

21



Conclusion & Literature

- Data fitting on manifolds with Bézier curves
minimizing their acceleration
- computed the gradient with respect to control points
- implemented within the MVIR toolbox (available soon)
ronnybergmann.net/mvirt/

ronnybergmann.net/talks/2018-Hasenwinkel-AccBezier.pdf 22
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