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An m~-dimensional Riemannian Manifold M

A d-dimensional Riemannian manifold can be informally
defined as a set M covered with a ‘suitable’ collection of
charts, that identify subsets of M with open subsets of R¢ and
a continously varying inner product on the tangential spaces.

[Absil, Mahony, Sepulchre, 2008] 2



An m~-dimensional Riemannian Manifold M

Geodesic g(-; z,y) shortest path (on M) between z,y € M
Tangent space T, M at z, with inner product (-, ),
Logarithmic map log, vy = ¢(0; x,y) “speed towards "
Exponential map exp, £,= g(1), where g(0) = z, g(0) = &,
Parallel transport PT,_,,(v) of v € T, M along g(-; z,y)



Optimization on Manifolds

Let A be a Riemannian manifold and E: N/ — R.

We aim to solve

argmin F(x)
zeN

- often: product manifold A/ = M™
- for n € N% manifold-valued image processing
= highdimensional problem

- locally: convexity defined via geodesics



Variational Methods on Manifolds

Variational methods model a trade-off between staying close
to the data and minimizing a certain property

B(z) = D(; f) + aR(z)

- a > 0isaweight

- f € N is given Data

- data or similarity term D(x; f)
- regularizer / prior R(x)



Differential and Gradient

The differential D, f = Df: TM — R of a real-valued function
f: M — Ris the push-forward of f.

Intuition: Given z € M and & € T, M, then Df(z)[¢] is the
directional derivative of f.

The gradient Vf: M — T M is the tangent vector fulfilling

(Vaf (@), m)e = Df(z)[n] foralln € T, M

= gradient descent (with e.g. Armijo’s rule)



Data Fitting on Manifolds

Given data points dp,...,d, on a Riemannian manifold M and
time points ¢; € I, find a “nice” curve y: I — M, v € T, such
that v(¢;) = d, (interpolation) or ~(t;) ~ d; (approximation).

- I" set of geodesics & approximation: geodesic regression

[Rentmeesters, "11; Fletcher, "13; Boumal '13]

- I" Sobolev space of curves: Inifinite-dimensional problem

[Samir et. al./12]

- I composite Bézier curves; LSs in tangent spaces

[Arnould et. al. "15; Gousenbourger, Massart, Absil, 18]

- Discretized curve, T' = MY, (Boumal, Absil, 1]

This talk

“nice” means minimal (discretized) acceleration (“as straight as
possible”) for I' the set of composite Bézier curves.

In Euclidean space: Natural cubic splines as closed form
solution.



(Euclidean) Bézier Curves

Definition . _ [Bézier, 62
A Bezier curve Bi of degree K € Ny is a function

Br: [0,1] — R? parametrized by control points by, ...,bx € R®
and defined by

K
Bk (t;bo,. .., bk) =Y _b;Bjk(t),
=0

[Bernstein, 1912]

where B; i = (%)#/(1— ¢)¥~7 are the Bernstein polynomials of
degree K.

Evaluation via Casteljau’s algorithm. (de Casteljau, '50]



Illustration of de Casteljau’s Algorithm

The set of control points by, by, by, bs.



Illustration of de Casteljau’s Algorithm

b3
Evaluate line segments at ¢t = % obtain x{;%xﬁﬂ, x[zﬂ.



Illustration of de Casteljau’s Algorithm

o

b3
Repeat evaluation for new line segments to obtain x{f],w?].



Illustration of de Casteljau’s Algorithm
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Repeat for the last segment to obtain 63(%; bo, b1, by, b3) = xE.



Illustration of de Casteljau’s Algorithm
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Same procedure for evaluation of 53(%; bo, b1, b, b3).



Illustration of de Casteljau’s Algorithm
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Same procedure for evaluation of 53(%; bo, b1, by, b3).



Illustration of de Casteljau’s Algorithm

b

b3
Complete curve B3(t; bo, by, by, b3).



Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R? is defined as

B (£:08,...,5%) ift € [0,1],

B(t) = ' ' .
Br(t —i;bp,...,b%), ifte(,i+1, i=1...,n—1



Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R? is defined as

60, b0 ift e [0,1],
B(t) = B (t; by | K)' | [0,7]
Br(t —i;bp,...,b%), ifte(,i+1, i=1...,n—1

Denote ith segment by B;(t) = Bk (t;bY, . .., b% ) and p; = b,

ob;
b50

bo = po




Composite Bézier Curves

Definition
A composite Bezier curve B: [0,n] — R? is defined as

60, b0 ift e [0,1],
B(t) = Bk (t; by | K)' | [0,1]
Br(t —i;bp,...,b%), ifte(,i+1, i=1...,n—1

Denote ith segment by B;(t) = Bk (t;bY, . .., b% ) and p; = b,

- continuous iff B;—1(1) = B;(0),i=1,...,n—1
= =0 =p;,i=1,...,n—1
+ continuously differentiable iff p; = 3(b%, + b%)



Bézier Curves on a Manifold

Deﬁnition. ) ) . [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N.

The (generalized) Bézier curve of degree k, k < K, is defined as

Bk(ta bOa o 7bk) — g(t,ﬁk_‘|(t, bOa .. '7bk—1)76k—1(t; b17 cee 7bk))a

if k>0, and

Bo(t; bo) = bo.

10



Bézier Curves on a Manifold

Deﬁnition. ) ) . [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N.

The (generalized) Bézier curve of degree k, k < K, is defined as

Br(t;bo, ..., bg) = g(t; Be—1(t;bo, . .., be—1), Be—1(t; b1,. .., bg)),

if k>0, and
Bo(t; bo) = bo.
- Bézier curves 4(t; bo, b1) = g(t; bo, b1) are geodesics.

- composite Bézier curves B: [0,n] — M completely
analogue (using geodesics for line segments)

10



Bézier Curves on a Manifold

Deﬁnition. ) ) . [Park, Ravani, 1995; Popiel, Noakes, 2007]
Let M be a Riemannian manifold and bg,...,bx € M, K € N.

The (generalized) Bézier curve of degree k, k < K, is defined as
Br(t; bo, . ., bg) = g(t; Br—1(t; bo, - - -, bu—1), Be—1(t;b1,..., b)),
if k>0, and

- Bo(t;bo) =bo. . 4
The Riemannian composite Bezier curve B(t) is

- continuous Iff B;_1(1) = B;(0),i=1,...,n—1
=b = =p,i=1...,n—1

- continuously differentiable iff p; = g(3; %", ) or
v = g(2:0%, pi)

10



Illustration of a Composite Bézier Curve on the Sphere S?

The directions, e.g. log,,, b} are now tangent vectors. X



A Variational Model for Data Fitting

Let dg,...,d, € M. A model for data fitting reads

D?B(t) H2
dt2 B

)\ o 2
B(B) =5 du(B®.do) + | At Ao,
k=0

where B € T is from the set of continuously differentiable
composite Bezier curve of degree K with n segments.

« Goal: find minimizer B* € T

- finite dimensional optimization problem
in the control points b; i.e. on M% with

c L=n(K—1)+2
- A — oo yields interpolation (px = dg) = L = n(K —2) +1

- On M = R™: closed form solution, natural (cubic) splines

12



Interlude: Second Order Differences on Manifolds

Second order difference: [RB et al, 2014 RB, Weinmann, 2016; Bacak et al, 2016]

do(z,y, 2) = min dpm(e,y), z,y,2 € M,

ce T,z
C... mid point(s) of geodesic(s) g(-; z, 2)

fllo = 2y+2l = 13 +2) ~ylla 28, mley)
Y

13



Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative

/n D2B(t)Hz dt~]§ Ad3[B(si_1), B(si), B(si11)]
o I dt?2 iy — Ay .
on equidistant points so, ..., sy with step size A; = s1 — so.

Evaluating E(B) consists of evaluation of geodesics and
squared (Riemannian) distances

- (N + 1)K geodesics to evaluate the Bézier segments
- N geodesics to evaluate the mid points

- N squared distances to obtain the second order absolute
finite differences squared

14



Gradient and Chain Rule on a Manifold

The gradient Vap f(x) € TyM of f: M — R,z € M, is defined
as the tangent vector that fulfills

(Vmf(x), &) =Df(x)[g] forall &eT, M.

For a composition F(z) = (g o h)(x) = g(h(x)) of two functions
g,h: M — M the chain rule reads forz €¢ M and £ € T, M as

where D h[€] € Tj,;)M and D F[€] € T, M.

15



The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation
Lye(s,t) = exp, (5 (C(5)), s € (—e,e), t €10,1],e > 0.
Is used to define the Jacobi field Jy¢(t) = %ngg(s,tﬂszo.

Then the differential reads D.g(¢,-,y)[§
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Implementing Jacobi Fields on Symmetric Spaces

A manifold is symmetric if for every geodesic g and avery
x € M the mapping g(t) — g(—t) is an isometry at least locally
around z = ¢(0).

Then

- one can diagonalize the curvature tensor R,

- let kp denote its eigenvalues.

- let {&,...,&n} € T M be an ONB of eigenvalues with
& =log, v

- parallel transport Z;(t) = PT, g0, &0 3 =150, m



Implementing Jacobi Fields on Symmetric Spaces Il

Decompose n =Y &l Then
=1

Dayg(t; 2, y)[n] ZWJg g (t
with ( )
sinh(dg(1—t)v/—FKe ) — .
zinhg(dg\/Tz)) :g(t) if ke < 0,
— sin(dg(1—t) _ .
Jg&(t) ﬁq(t) if kg > 0,

(1= (%) if g = 0.



Implementing the Gradient using adjoint Jacobi Fields.

The adjoint Jacobi fields
Jy . (t): TyiyM — TxM
are characterized by

<J9 f( ) > <£7 gn(t»ﬂi’ for allf € TIMvn € Tg(t;a:,y)M'

- can be computed without extra efforts, i.e. the same ODEs
occur.

= can be used to calculate the gradient

- the gradient of iterated evaluations of geodesics can be
computed by composition of (adjoint) Jacobi fields

19



Gradient Descent on a Manifold

Let N/ = ML be the product manifold of M,

Input.

- [ N =R,

- its gradient Vs f,

- initial data 2@ = b e NV

- step sizes s > 0,k € N.
Output: & € V
k<« 0
repeat

*+) — exp i (=5 Vi f(z®))

k+k+1
until a stopping criterion is reached
return i := z(*)

20



Armijo Step Size Rule

Let z = () be an iterate from the gradient descent algorithm,
B,o0 € (0,1),a > 0.

Let m be the smallest positive integer such that
f(@) = fexpe (=BT aVn f(x)) > o™ al|Va f(@)|e

Set the step size s = ™a.

21



Minimizing with Known Minimizer

_—
s —
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<

Original Minimized

9.10-2 Absolute first order differences ||logg ;) B(ti+1)llB(1:)

3.1072
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Interpolation by Bézier Curves with Minimal Acceleration.

A comp. Bezier curve (black) and its mnimizer (blue). »



Approximation by Bézier Curves with Minimal Acceleration.

In the following video A is slowly decreased from 10 to o.

The initial setting, A = 10. .



Approximation by Bézier Curves with Minimal Acceleration.

In the following video X is slowly decreased from 10 to o.
= — E,\~

24

Summary of the video.



Comparison tO PreVious Approach [Gousenbourger, Massart, Absil, 2018]

This curve (dashed) is “too global” to be solved in a tangent

space (dotted) correctly, while our method (blue) still works.



An Example of Rotations M = SO(3)

Initialization with approach from composite splines
[Gousenbourger, Massart, Absil, 2018]

. =
= w y = w°© =: =
- 2= 50 S0 5 5N
‘:ﬁ - B s :?

TSP AR B R
] = - . «° ) =

Our method outperforms the approach of solving linear
systems in tangent spaces, but their approach can serve as an
initialization.

26



- Data fitting on manifolds with Bézier curves
minimizing their acceleration

- computed the gradient with respect to control points
- employed Jacobi fields and their adjoints.

- implemented within the MVIR toolbox (available soon)
ronnybergmann.net/mvirt/

- aJulia implementation in preparation (Manopt.jl)

27


https://ronnybergmann.net/mvirt/
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