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Anm-dimensional Riemannian ManifoldM

g(·;x, y)x y

expx
logx

ξx

logx x

TxM

M

ν
PTx→y(ν)

A d-dimensional Riemannian manifold can be informally
defined as a setM covered with a ‘suitable’ collection of

charts, that identify subsets ofM with open subsets of Rd and
a continously varying inner product on the tangential spaces.

[Absil, Mahony, Sepulchre, 2008]

Geodesic g(·;x, y) shortest path (onM) between x, y ∈M
Tangent space TxM at x, with inner product ⟨·, ·⟩x
Logarithmic map logx y = ġ(0;x, y) “speed towards y”
Exponential map expx ξx= g(1), where g(0) = x, ġ(0) = ξx

Parallel transport PTx→y(ν) of ν ∈ TxM along g(·;x, y)
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Optimization on Manifolds

Let N be a Riemannian manifold and E : N → R.

We aim to solve
argmin
x∈N

E(x)

• often: product manifold N =Mn

• for n ∈ N2: manifold-valued image processing
⇒ highdimensional problem
• locally: convexity defined via geodesics
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Variational Methods on Manifolds

Variational methods model a trade-off between staying close
to the data and minimizing a certain property

E(x) = D(x; f) + αR(x)

• α > 0 is a weight
• f ∈ N is given Data
• data or similarity term D(x; f)

• regularizer / prior R(x)

4



Differential and Gradient

The differential Dxf = Df : TM→ R of a real-valued function
f :M→ R is the push-forward of f .

Intuition: Given x ∈M and ξ ∈ TxM, then Df(x)[ξ] is the
directional derivative of f .

The gradient ∇f :M→ TM is the tangent vector fulfilling

⟨∇Mf(x), η⟩x = Df(x)[η] for all η ∈ TxM

⇒ gradient descent (with e.g. Armijo’s rule)

5



Data Fitting on Manifolds

Given data points d0, . . . , dn on a Riemannian manifoldM and
time points ti ∈ I , find a “nice” curve γ : I →M, γ ∈ Γ, such
that γ(ti) = di (interpolation) or γ(ti) ≈ di (approximation).

• Γ set of geodesics & approximation: geodesic regression
[Rentmeesters, ’11; Fletcher, ’13; Boumal ’13]

• Γ Sobolev space of curves: Inifinite-dimensional problem
[Samir et. al.,’12]

• Γ composite Bézier curves; LSs in tangent spaces
[Arnould et. al. ’15; Gousenbourger, Massart, Absil, ’18]

• Discretized curve, Γ =MN , [Boumal, Absil, ’11]

This talk
“nice” means minimal (discretized) acceleration (“as straight as
possible”) for Γ the set of composite Bézier curves.
In Euclidean space: Natural cubic splines as closed form
solution. 6



(Euclidean) Bézier Curves

[Bézier, ’62]Definition
A Bézier curve βK of degree K ∈ N0 is a function
βK : [0, 1]→ Rd parametrized by control points b0, . . . , bK ∈ Rn

and defined by

βK(t; b0, . . . , bK) :=

K∑
j=0

bjBj,K(t),

[Bernstein, 1912]

where Bj,K =
(
K
j

)
tj(1− t)K−j are the Bernstein polynomials of

degree K .

Evaluation via Casteljau’s algorithm. [de Casteljau, ’59]
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Illustration of de Casteljau’s Algorithm
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The set of control points b0, b1, b2, b3. 8
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Illustration of de Casteljau’s Algorithm
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Composite Bézier Curves

Definition
A composite Bezier curve B : [0, n]→ Rd is defined as

B(t) :=

βK(t; b00, . . . , b
0
K) if t ∈ [0, 1],

βK(t− i; bi0, . . . , b
i
K), if t ∈ (i, i+ 1], i = 1, . . . , n− 1.

Denote ith segment by Bi(t) = βK(t; bi0, . . . , b
i
K) and pi = bi0.

B0 B1 B2 B3 B4

t|
0

|
1

|
2

|
3

|
4

|
5

b00 = p0

b01

b02

p1
b11

b12

p2 b21

b22 p3

b31

b32

p4

b41

b42

p5 = b43

The composite Bezier curve B(t) is

• continuous iff Bi−1(1) = Bi(0), i = 1, . . . , n− 1
⇒ bi−1

K = bi0 = pi, i = 1, . . . , n− 1
• continuously differentiable iff pi = 1

2(b
i−1
K−1 + bi1)
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Bézier Curves on a Manifold

[Park, Ravani, 1995; Popiel, Noakes, 2007]Definition.
LetM be a Riemannian manifold and b0, . . . , bK ∈M, K ∈ N.

The (generalized) Bézier curve of degree k, k ≤ K , is defined as

βk(t; b0, . . . , bk) = g(t;βk−1(t; b0, . . . , bk−1), βk−1(t; b1, . . . , bk)),

if k > 0, and

β0(t; b0) = b0.

• Bézier curves β1(t; b0, b1) = g(t; b0, b1) are geodesics.
• composite Bézier curves B : [0, n]→M completely
analogue (using geodesics for line segments)

The Riemannian composite Bezier curve B(t) is

• continuous iff Bi−1(1) = Bi(0), i = 1, . . . , n− 1
⇒ bi−1

K = bi0 =: pi, i = 1, . . . , n− 1
• continuously differentiable iff pi = g

( 1
2 ; b

i−1
K−1, b

i
1
)
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Illustration of a Composite Bézier Curve on the Sphere S2

The directions, e.g. logpj b
1
j , are now tangent vectors. 11



A Variational Model for Data Fitting

Let d0, . . . , dn ∈M. A model for data fitting reads

E(B) =
λ

2

n∑
k=0

d2M(B(k), dk) +

∫ n

0

∥∥∥D2B(t)

dt2

∥∥∥2
B(t)

,dt λ > 0,

where B ∈ Γ is from the set of continuously differentiable
composite Bezier curve of degree K with n segments.

• Goal: find minimizer B∗ ∈ Γ

• finite dimensional optimization problem
in the control points bij , i.e. onML with

• L = n(K − 1) + 2
• λ→∞ yields interpolation (pk = dk)⇒ L = n(K − 2) + 1

• OnM = Rm: closed form solution, natural (cubic) splines
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Interlude: Second Order Differences on Manifolds

Second order difference: [RB et al., 2014; RB, Weinmann, 2016; Bačák et al., 2016]

d2(x, y, z) := min
c∈Cx,z

dM(c, y), x, y, z ∈M,

Cx,z mid point(s) of geodesic(s) g(·;x, z)
1
2∥x− 2y+ z∥2 = ∥ 12(x+ z)− y∥2

x

y

z

c(x, z)

min
c∈Cx,z

dM(c, y)

x

y

zc(x, z)

c′

M = S2
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Discretizing the Data Fitting Model

We discretize the absolute second order covariant derivative∫ n

0

∥∥∥D2B(t)

dt2

∥∥∥2
γ(t)

dt ≈
N−1∑
k=1

∆sd
2
2[B(si−1), B(si), B(si+1)]

∆4
s

.

on equidistant points s0, . . . , sN with step size ∆s = s1 − s0.

Evaluating E(B) consists of evaluation of geodesics and
squared (Riemannian) distances

• (N + 1)K geodesics to evaluate the Bézier segments
• N geodesics to evaluate the mid points
• N squared distances to obtain the second order absolute
finite differences squared
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Gradient and Chain Rule on a Manifold

The gradient ∇Mf(x) ∈ TxM of f :M→ R, x ∈M, is defined
as the tangent vector that fulfills

⟨∇Mf(x), ξ⟩x = Df(x)[ξ] for all ξ ∈ TxM.

For a composition F (x) = (g ◦ h)(x) = g(h(x)) of two functions
g, h :M→M the chain rule reads for x ∈M and ξ ∈ TxM as

DxF [ξ] = Dh(x)g
[
Dxh[ξ]

]
,

where Dxh[ξ] ∈ Th(x)M and DxF [ξ] ∈ TF (x)M.
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The Differential of a Geodesic w.r.t. its Start Point

The geodesic variation

Γg,ξ(s, t) := expγx,ξ(s)(tζ(s)), s ∈ (−ε, ε), t ∈ [0, 1], ε > 0.

is used to define the Jacobi field Jg,ξ(t) =
∂
∂sΓg,ξ(s, t)|s=0.

ξ = Jg,ξ(0)

Jg,ξ(t)

Jg,ξ

g(·;x, y)

ζ(0)
ζ(ŝ)

x

y

Γg,ξ(ŝ, 0)

Γg,ξ(s, 0) = γx,ξ(s)

Γg,ξ(s, t)

g(t;x, y)

Then the differential reads Dxg(t, ·, y)[ξ] = Jg,ξ(t). 16



Implementing Jacobi Fields on Symmetric Spaces

A manifold is symmetric if for every geodesic g and avery
x ∈M the mapping g(t) 7→ g(−t) is an isometry at least locally
around x = g(0).

Then

• one can diagonalize the curvature tensor R,
• let κℓ denote its eigenvalues.
• let {ξ1, . . . , ξm} ⊆ TxM be an ONB of eigenvalues with
ξ1 = logx y.

• parallel transport Ξj(t) = PTx→g(t;x,y) ξj , j = 1, . . . ,m
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Implementing Jacobi Fields on Symmetric Spaces II

Decompose η =

m∑
i=1

ηℓξℓ. Then

Dxg(t;x, y)[η] = Jg,η(t) =

m∑
ℓ=1

ηℓJg,ξℓ(t),

with

Jg,ξℓ(t) =


sinh

(
dg(1−t)

√
−κℓ

)
sinh(dg

√
−κℓ)

Ξℓ(t) if κℓ < 0,
sin
(
dg(1−t)

√
κℓ

)
sin(

√
κℓdg)

Ξℓ(t) if κℓ > 0,

(1− t)Ξℓ(t) if κℓ = 0.
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Implementing the Gradient using adjoint Jacobi Fields.

The adjoint Jacobi fields

J∗
g,·(t) : Tg(t)M→ TxM

are characterized by

⟨Jg,ξ(t), η⟩g(t) = ⟨ξ, J∗
g,η(t)⟩x, for all ξ ∈ TxM, η ∈ Tg(t;x,y)M.

• can be computed without extra efforts, i.e. the same ODEs
occur.

⇒ can be used to calculate the gradient
• the gradient of iterated evaluations of geodesics can be
computed by composition of (adjoint) Jacobi fields
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Gradient Descent on a Manifold

Let N =ML be the product manifold ofM,

Input.
• f : N → R,
• its gradient ∇N f ,
• initial data x(0) = b ∈ N
• step sizes sk > 0, k ∈ N.

Output: x̂ ∈ N
k ← 0
repeat
x(k+1) ← expx(k)

(
−sk∇N f(x(k))

)
k ← k + 1

until a stopping criterion is reached
return x̂ := x(k)

20



Armijo Step Size Rule

Let x = x(k) be an iterate from the gradient descent algorithm,
β, σ ∈ (0, 1), α > 0.

Let m be the smallest positive integer such that

f(x)− f
(
expx(−βmα∇N f(x))

)
≥ σβmα∥∇N f(x)∥x

Set the step size sk := βmα.
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Minimizing with Known Minimizer

Original Minimized

0 1
2

1 3
2

2

3 · 10−2

9 · 10−2 Absolute first order differences ∥logB(ti) B(ti+1)∥B(ti)
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Interpolation by Bézier Curves with Minimal Acceleration.

A comp. Bezier curve (black) and its mnimizer (blue). 23



Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

The initial setting, λ = 10.
24



Approximation by Bézier Curves with Minimal Acceleration.

In the following video λ is slowly decreased from 10 to 0.

Summary of the video.
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Comparison to Previous Approach [Gousenbourger, Massart, Absil, 2018]

This curve (dashed) is “too global” to be solved in a tangent
space (dotted) correctly, while our method (blue) still works. 25



An Example of RotationsM = SO(3)

Initialization with approach from composite splines
[Gousenbourger, Massart, Absil, 2018]

Our method outperforms the approach of solving linear
systems in tangent spaces, but their approach can serve as an
initialization.
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Summary

• Data fitting on manifolds with Bézier curves
minimizing their acceleration

• computed the gradient with respect to control points
• employed Jacobi fields and their adjoints.
• implemented within the MVIR toolbox (available soon)

ronnybergmann.net/mvirt/
• a Julia implementation in preparation (Manopt.jl)

27

https://ronnybergmann.net/mvirt/
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